The Study of Fluorinated Amorphous Carbon as Low-K Dielectric Material and its Interface with Copper Metallization

1999 ◽  
Vol 564 ◽  
Author(s):  
N. Ariel ◽  
M. Eizenberg ◽  
E. Y. Tzou

AbstractIn order to achieve better performance of devices, the interconnects RC delay time, the limiting factor of the device speed today, must be reduced. This calls for a new interconnect stack: lower resistivity Copper and low k materials (k<3) as dielectrics.Fluorinated amorphous carbon (a-F:C) prepared by HDP- CVD is an attractive candidate as a low-k material. In this work we have studied the film, its stability and its interface with Copper metallization. The high density plasma CVD process resulted in a film which contains C and F at a ratio of 1:0.6 as determined by Nuclear Reactions Analysis. XPS analysis of the C Is transition indicated four types of bonds: C-C, C-CF, CF, and CF2. X-ray diffraction as well as high resolution TEM analyses proved that the film was amorphous at least up to 500°C anneal. For various applications, the advantage of adding a thin bi-layer of a-SiC/SiOx for adhesion promotion purposes was demonstrated. In addition, the interface of a-F:C and the adhesion promoter layer with Ta, TaN and Cu was studied. No interdiffusion was observed by SIMS after 400°C annealing. 500°C annealing caused F outdiffusion from the film and Cu diffusion into the adhesion promoter layer.

1999 ◽  
Vol 565 ◽  
Author(s):  
N. Ariel ◽  
M. Eizenberg ◽  
E. Y. Tzou

AbstractIn order to achieve better performance of devices, the interconnects RC delay time, the limiting factor of the device speed today, must be reduced. This calls for a new interconnect stack: lower resistivity Copper and low k materials (k<3) as dielectrics.Fluorinated amorphous carbon (a-F:C) prepared by HDP- CVD is an attractive candidate as a low-k material. In this work we have studied the film, its stability and its interface with Copper metallization. The high density plasma CVD process resulted in a film which contains C and F at a ratio of 1:0.6 as determined by Nuclear Reactions Analysis. XPS analysis of the Cls transition indicated four types of bonds: C-C, C-CF, CF, and CF2. X-ray diffraction as well as high resolution TEM analyses proved that the film was amorphous at least up to 500°C anneal. For various applications, the advantage of adding a thin bi-layer of a-SiC/SiOx for adhesion promotion purposes was demonstrated. In addition, the interface of a-F:C and the adhesion promoter layer with Ta, TaN and Cu was studied. No interdiffusion was observed by SIMS after 400°C annealing. 500°C annealing caused F outdiffusion from the film and Cu diffusion into the adhesion promoter layer.


2005 ◽  
Vol 103-104 ◽  
pp. 357-360
Author(s):  
B.G. Sharma ◽  
Chris Prindle

Interconnect RC delay is the limiting factor for device performance in submicron semiconductor technology. Copper and low-k dielectric materials can reduce this delay and have gained widespread acceptance in the semiconductor industry. The presence of copper interconnects provides unprecedented challenges for via cleaning technology and requires the development of novel process chemistries for improved device capability.


2002 ◽  
Vol 716 ◽  
Author(s):  
Ilanit Fisher ◽  
Wayne D. Kaplan ◽  
Moshe Eizenberg ◽  
Michael Nault ◽  
Timothy Weidman

AbstractThe success of future gigascale integrated circuits (IC) chip technology depends critically upon the reduction of the interconnects RC delay time. This calls for the development of new low dielectric constant (low-k) insulators, and for work on their integration with lower resistivity copper metallization.A porous silica based film prepared by surfactant templated self-assembly spin-on deposition (SOD) is an attractive candidate as a low-k material. In this research we have studied the structure, chemical composition and bonding of the film and its interface with copper metallization. The decomposition and vaporization of the surfactant in the last step of film deposition resulted in a film with an amorphous structure, as determined by XRD and TEM analysis. Its high porosity (35-58%) was confirmed by XRR and RBS measurements. XPS analysis of the Si2p transition indicated three types of bonding: Si-O, O-Si-C and Si-C. The bonding characteristics were also investigated by FTIR analysis. The effect of a hydrogen plasma post-treatment process on the film topography and bonding was determined by AFM and XPS, respectively. It was found that direct H2 plasma exposure significantly affected the surface roughness of the film and type of chemical bonding. The structure and properties of various PECVD deposited capping layers were also studied, as was the interface between the porous dielectric and Ta, TaxN and Cu (PVD deposited films) after annealing at 200-700°C in vacuum environment for 30 min. At temperatures up to 500°C, no significant diffusion of Cu or Ta into the porous film was detected, as determined by RBS. No copper penetration was detected up to 700°C, according to AES and SIMS analysis. However, at 700°C copper dewetting occurred when it was deposited directly on the porous silica based film.


1998 ◽  
Vol 511 ◽  
Author(s):  
R. H. Havemann ◽  
M. K. Jain ◽  
R. S. List ◽  
A. R. Ralston ◽  
W-Y. Shih ◽  
...  

ABSTRACTThe era of silicon Ultra-Large-Scale-Integration (ULSI) has spurred an everincreasing level of functional integration on-chip, driving a need for greater circuit density and higher performance. While traditional transistor scaling has thus far met this challenge, interconnect scaling has become the performance-limiting factor for new designs. Both interconnect resistance and capacitance play key roles in overall performance, but modeling simulations have highlighted the importance of reducing parasitic capacitance to manage crosstalk, power dissipation and RC delay. New dielectric materials with lower permittivity (k) are needed to meet this challenge. This paper summarizes the process integration and reliability issues associated with the use of novel low k materials in multilevel interconnects.


1999 ◽  
Vol 565 ◽  
Author(s):  
Hongning Yang ◽  
David R. Evans ◽  
Tue Nguyen ◽  
Lisa H. Stecker ◽  
Bruce Ulrich ◽  
...  

AbstractIn this paper, we present studies on the integration process of CVD Cu with low-k fluorinated amorphous carbon (a-F:C) in single level and multilevel damascene structure. A thin layer of adhesion promoter material, SiC:H, was utilized to enhance the adhesion and mechanical properties of the damascene stacking layers. The SiC:H layer could also serve as a barrier to contain fluorine atoms from diffusion. The improved a-F:C damascene stacking layers are able to sustain the process of CMP, heat treatment, patterning and plasma etching. The fabrication of single and multi-level damascene structures is proved to be feasible. Some of the electrical performance data evaluated on the Cu/a-F:C damascene structure will be also presented in this paper.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000323-000326
Author(s):  
Ching Chia Chen ◽  
Yu-Po Wang ◽  
Jensen Tsai ◽  
Hsin Long Chen

Abstract As consumer and portable devices get thinner and more functionality. Chips which are made by less than 28 nm node wafer with extreme Low-k (ELK) inter metal dielectric material is a trend in order to contain more transistors and to lower power consumption. However, side wall crack (SWC) for WLCSP is one of the major challenges since ELK layer getting brittle. Laser grooving is applied to remove metal before blade saw, but the high temperature during laser grooving usually easily generates HAZ (heat-affected zone) which can induce stress concentration and lower chip strength. The laser ablation also leaves metal-silicon residue (or recast) from the re-deposition of silicon to the groove and surrounding areas. Therefore, SWC (sidewall crack) is a huge potential risk waiting to happen after pick and place, during shipment and during SMT process. In the industry, HAZ size and SWC rate could be reduced by adjusting process parameters, or by exploring new alternatives to eliminate HAZ and silicon recast is one of driving factors of this paper. In this study, plasma etching was applied as surface treatment on the scribe line after laser grooving process with ELK wafer. Plasma could etch HAZ and recast area and expected to increase chip strength and reduce SWC rate. Plasma applied with various process time and power, and different types of mask coating materials were studied. Different plasma gases and effectiveness will be discussed. Conventional blade dicing process will be compared to different plasma etching conditions for mechanical properties of die using 3-point bending test to check die strength, and SEM and OM to verify quality of sidewall of the die. Finally drop test was performed to confirm the reliability enhancement.


2009 ◽  
Vol 6 (1) ◽  
pp. 59-65
Author(s):  
Karan Kacker ◽  
Suresh K. Sitaraman

Continued miniaturization in the microelectronics industry calls for chip-to-substrate off-chip interconnects that have 100 μm pitch or less for area-array format. Such fine-pitch interconnects will have a shorter standoff height and a smaller cross-section area, and thus could fail through thermo-mechanical fatigue prematurely. Also, as the industry transitions to porous low-K dielectric/Cu interconnect structures, it is important to ensure that the stresses induced by the off-chip interconnects and the package configuration do not crack or delaminate the low-K dielectric material. Compliant free-standing structures used as off-chip interconnects are a potential solution to address these reliability concerns. In our previous work we have proposed G-Helix interconnects, a lithography-based electroplated compliant off-chip interconnect that can be fabricated at the wafer level. In this paper we develop an assembly process for G-Helix interconnects at a 100 μm pitch, identifying the critical factors that impact the assembly yield of such free-standing compliant interconnect. Reliability data are presented for a 20 mm × 20 mm chip with G-Helix interconnects at a 100 μm pitch assembled on an organic substrate and subjected to accelerated thermal cycling. Subsequent failure analysis of the assembly is performed and limited correlation is shown with failure location predicted by finite elements models.


2007 ◽  
Vol 129 (4) ◽  
pp. 460-468 ◽  
Author(s):  
Karan Kacker ◽  
Thomas Sokol ◽  
Wansuk Yun ◽  
Madhavan Swaminathan ◽  
Suresh K. Sitaraman

Demand for off-chip bandwidth has continued to increase. It is projected by the Semiconductor Industry Association in their International Technology Roadmap for Semiconductors that by the year 2015, the chip-to-substrate area-array input-output interconnects will require a pitch of 80 μm. Compliant off-chip interconnects show great potential to address these needs. G-Helix is a lithography-based electroplated compliant interconnect that can be fabricated at the wafer level. G-Helix interconnects exhibit excellent compliance in all three orthogonal directions, and can accommodate the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate without requiring an underfill. Also, these compliant interconnects are less likely to crack or delaminate the low-k dielectric material in current and future integrated circuits. The interconnects are potentially cost effective because they can be fabricated in batch at the wafer level and using conventional wafer fabrication infrastructure. In this paper, we present an integrative approach, which uses interconnects with varying compliance and thus varying electrical performance from the center to the edge of the die. Using such a varying geometry from the center to the edge of the die, the system performance can be tailored by balancing electrical requirements against thermomechanical reliability concerns. The test vehicle design to assess the reliability and electrical performance of the interconnects is also presented. Preliminary fabrication results for the integrative approach are presented and show the viability of the fabrication procedure. The results from reliability experiments of helix interconnects assembled on an organic substrate are also presented. Initial results from the thermal cycling experiments are promising. Results from mechanical characterization experiments are also presented and show that the out-of-plane compliance exceeds target values recommended by industry experts. Finally, through finite element analysis simulations, it is demonstrated that the die stresses induced by the compliant interconnects are an order of magnitude lower than the die stresses in flip chip on board (FCOB) assemblies, and hence the compliant interconnects are not likely to crack or delaminate low-k dielectric material.


Sign in / Sign up

Export Citation Format

Share Document