A Heterogeneous Array of Off-Chip Interconnects for Optimum Mechanical and Electrical Performance

2007 ◽  
Vol 129 (4) ◽  
pp. 460-468 ◽  
Author(s):  
Karan Kacker ◽  
Thomas Sokol ◽  
Wansuk Yun ◽  
Madhavan Swaminathan ◽  
Suresh K. Sitaraman

Demand for off-chip bandwidth has continued to increase. It is projected by the Semiconductor Industry Association in their International Technology Roadmap for Semiconductors that by the year 2015, the chip-to-substrate area-array input-output interconnects will require a pitch of 80 μm. Compliant off-chip interconnects show great potential to address these needs. G-Helix is a lithography-based electroplated compliant interconnect that can be fabricated at the wafer level. G-Helix interconnects exhibit excellent compliance in all three orthogonal directions, and can accommodate the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate without requiring an underfill. Also, these compliant interconnects are less likely to crack or delaminate the low-k dielectric material in current and future integrated circuits. The interconnects are potentially cost effective because they can be fabricated in batch at the wafer level and using conventional wafer fabrication infrastructure. In this paper, we present an integrative approach, which uses interconnects with varying compliance and thus varying electrical performance from the center to the edge of the die. Using such a varying geometry from the center to the edge of the die, the system performance can be tailored by balancing electrical requirements against thermomechanical reliability concerns. The test vehicle design to assess the reliability and electrical performance of the interconnects is also presented. Preliminary fabrication results for the integrative approach are presented and show the viability of the fabrication procedure. The results from reliability experiments of helix interconnects assembled on an organic substrate are also presented. Initial results from the thermal cycling experiments are promising. Results from mechanical characterization experiments are also presented and show that the out-of-plane compliance exceeds target values recommended by industry experts. Finally, through finite element analysis simulations, it is demonstrated that the die stresses induced by the compliant interconnects are an order of magnitude lower than the die stresses in flip chip on board (FCOB) assemblies, and hence the compliant interconnects are not likely to crack or delaminate low-k dielectric material.

Author(s):  
Karan Kacker ◽  
George Lo ◽  
Suresh K. Sitaraman

Demand for off-chip bandwidth has continued to increase. It is projected by the Semiconductor Industry Association in their International Technology Roadmap for Semiconductors (ITRS) that by the year 2015, the chip-to-substrate area-array input-output interconnects will require a pitch of 70 μm. Compliant off-chip interconnects show great potential to address these needs. G-Helix is a lithography-based electroplated compliant interconnect that can be fabricated at the wafer level. G-Helix interconnects exhibit excellent compliance in all three orthogonal directions, and can accommodate the CTE mismatch between the silicon die and the organic substrate without requiring an underfill. Also, these compliant interconnect are less likely to crack or delaminate the low-K dielectric material in current and future ICs. The interconnects are also potentially cost effective as they can be fabricated using conventional wafer fabrication infrastructure. In this paper we present an integrative approach which uses interconnects with varying compliance and thus varying electrical preformance from the center to the edge of the die. Using such a varying geometry from the center to the edge of the die, the system performance can be tailored by balancing electrical requirements against thermo-mechanical reliability concerns. We also discuss the reliability assessment results of helix interconnects assembled on an organic substrate. Results from mechanical characterization experiments are also presented.


2009 ◽  
Vol 6 (1) ◽  
pp. 59-65
Author(s):  
Karan Kacker ◽  
Suresh K. Sitaraman

Continued miniaturization in the microelectronics industry calls for chip-to-substrate off-chip interconnects that have 100 μm pitch or less for area-array format. Such fine-pitch interconnects will have a shorter standoff height and a smaller cross-section area, and thus could fail through thermo-mechanical fatigue prematurely. Also, as the industry transitions to porous low-K dielectric/Cu interconnect structures, it is important to ensure that the stresses induced by the off-chip interconnects and the package configuration do not crack or delaminate the low-K dielectric material. Compliant free-standing structures used as off-chip interconnects are a potential solution to address these reliability concerns. In our previous work we have proposed G-Helix interconnects, a lithography-based electroplated compliant off-chip interconnect that can be fabricated at the wafer level. In this paper we develop an assembly process for G-Helix interconnects at a 100 μm pitch, identifying the critical factors that impact the assembly yield of such free-standing compliant interconnect. Reliability data are presented for a 20 mm × 20 mm chip with G-Helix interconnects at a 100 μm pitch assembled on an organic substrate and subjected to accelerated thermal cycling. Subsequent failure analysis of the assembly is performed and limited correlation is shown with failure location predicted by finite elements models.


2004 ◽  
Vol 126 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

Microsystem packages continue to demand lower cost, higher reliability, better performance and smaller size. Compliant wafer-level interconnects show great potential for next-generation packaging. G-Helix, an electroplated compliant wafer-level chip-to-substrate interconnect can facilitate wafer-level probing as well as wafer-level packaging without the need for an underfill. The fabrication of the G-Helix interconnect is similar to conventional IC fabrication process and is based on electroplating and photolithography. G-Helix interconnect has good mechanical compliance in the three orthogonal directions and can accommodate the differential displacement induced by the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate. In this paper, we report the wafer-level fabrication of an area-arrayed G-Helix interconnects. The geometry effect on the mechanical compliance and electrical parasitics of G-Helix interconnects have been studied. Thinner and narrower arcuate beams with larger radius and taller post are found to have better mechanical compliance. However, it is also found that structures with excellent mechanical compliance may not have good electrical performance. Therefore, a trade off is needed. Using response surface methodology (RSM), an optimization has been done. Furthermore, reliability of the optimized G-helix interconnects in a silicon-on-organic substrate assembly has been assessed, which includes the package weight and thermo-mechanical analysis. The pitch size effect on the electrical and mechanical performance of G-Helix interconnects has also been studied.


Author(s):  
Nicholas Kao ◽  
Jeng Yuan Lai ◽  
Jase Jiang ◽  
Yu Po Wang ◽  
C. S. Hsiao

With the trend of electronic consumer product toward more functionality, high performance and miniaturization, IC chip is required to deliver more I/Os signals and better electrical characteristics under same package form factor. Thus, Flip Chip BGA (FCBGA) package was developed to meet those requirements offering better electrical performance, more I/O pins accommodation and high transmission speed. For high-speed application, the low dielectric constant (low-k) material that can effectively reduce the signal delays is extensively used in IC chips. However, the low-k material possesses fragile mechanical property and high coefficient of thermal expansion (CTE) compared with silicon chip, which raises the reliability concerns of low-k material integrated into IC chip. The typical reliability failure modes are low-k layer delamination and bump crack under temperature loading during assembly and reliability test. Delamination is occurred in the interface between low-k dielectric layers and underfill material at chip corner. Bump crack is at Under Bump Metallization (UBM) corner. Thus, the adequate underfill material selection becomes very important for both solder bump and low-k chips [1]. This paper mainly characterized FCBGA underfill materials to guide the adequate candidates to prevent failures on low-k chip and solder bump. Firstly, test vehicle was a FCBGA package with heat spreader and was investigated the thermal stress by finite element models. In order to analyze localized low-k structures, sub-modeling technique is used for underfill characterizations. Then, the proper underfill candidates picked from modeling results were experimentally validated by reliability tests. Finally, various low-k FCBGA package structures were also studied with same finite element technique.


Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

As the rapid advances in IC design and fabrication continue to challenge and push the electronic packaging technology, in terms of fine pitch, high performance, low cost, and good reliability, compliant interconnects show great advantages for next-generation packaging. β-fly is designed as a compliant chip-to-substrate interconnect for performing wafer-level probing and for packaging without underfill. β-fly has good compliance in all directions to compensate the coefficient of thermal expansion (CTE) mismatch between the silicon die and an organic substrate. The fabrication of β-fly is similar to standard IC fabrication, and wafer-level packaging makes it cost effective. In this work, self-weight effect and stress distribution under planar displacement loading of β-fly is studied. The effect of geometry parameters on mechanical and electrical performance of β-fly is also studied. β-fly with thinner and narrower arcuate beams with larger radius and taller post is found to have better mechanical compliance. In addition to mechanical compliance, electrical characteristics of β-fly have also been studied in this work. However, it is found that structures with excellent mechanical compliance cannot have good electrical performance. Therefore, a trade off is needed for the design of β-fly. Response surface methodology and an optimization technique have been used to select the optimal β-fly structure parameters.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 002082-002094
Author(s):  
Pingye Xu ◽  
Michael C. Hamilton

With the increase of I/O density and scaling of interconnects, conventional solder ball interconnects are required to be made smaller. As a result, the reliability of the conventional solder ball flip-chip interconnects worsens. One method to mitigate this issue is by using underfill. However, underfill undermines the reworkability of the solder joints and is challenging to apply when the gap between chip and substrate is small. Another approach to enhance the reliability is to use taller solder ball interconnects, which is however usually more costly. Instead of using conventional solder ball interconnects, compliant interconnects have also been researched in the past few decades to mitigate the reliability issue. The use of compliant structures can compensate for the coefficient of thermal expansion (CTE) mismatch between a Si chip and an organic substrate. In this work, we present the design and fabrication of MEMS-type compliant overhang flip-chip interconnects. The structures are placed at the end of a coplanar waveguide (CPW) as interconnects between CPWs to research their performance at radio frequency (RF). A micro-fabrication process was adopted to build the interconnects. The CPWs are fabricated using conventional e-beam deposition followed by photolithography and then copper electroplating. The compliant overhangs were fabricated on top of a dome of reflowed photoresist on the CPWs to form a curved shape. The reflow and hard bake of the photoresist requires a process temperature of above 220 °C, which is similar to the reflow temperature of a Sn-Ag-Cu (SAC) solder. Therefore we believe our process is compatible with SAC solder processing infrastructures in terms of process temperature. The fabricated structures show high yield and uniformity. Due to the use of a micro-fabrication based process, the structures have the potential to be scaled and be compatible to wafer level packaging. The CPWs were then flip-chip bonded with the compliant interconnect as transitions. The RF performance of the interconnects up to 50 GHz will be presented.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000967-000974 ◽  
Author(s):  
Takashi Hisada ◽  
Yasuharu Yamada ◽  
Junko Asai ◽  
Toyohiro Aoki

As data transmission rate increases, flip chip plastic ball grid array (FCPBGA) utilizing a interposer for multiple chips is gaining popularity because of high electrical performance, ease of chip design, ease of thermal management with thermal lid, etc. The authors assessed package design configuration and key design elements for two chips application assuming 1600 signal I/Os for logic and 800 signal I/Os for memory. Then, we studied warpage behavior of the interposer, and mechanical stress of solder interconnections and low-k dielectric layer under controlled collapse chip connection (C4) pad. We set three different mount process assumptions for chip to interposer and interposer to base organic substrate. The mount process assumptions are (1) two pass reflow of chip to interposer first, then interposer to base organic substrate, (2) reversed sequence of two pass reflow which is interposer to base organic substrate first, then chip to interposer, (3) one pass reflow of chip, interposer and base organic substrate all together. We also set three different interposer material assumptions of Si, glass and organic in this study. We analyzed warpage behavior and mechanical stress using finite element method (FEM) modeling technique with a set of combinations of coefficient of thermal expansion (CTE) and elastic modulus of the interposers. The study also includes an analysis for conventional multi-chip-module (MCM) FCPBGA as a reference. We show the analysis results of interposer warpage, first principal stress at low-k dielectric layer under C4 pad and von Mises stress at solder interconnections of chip joining and interposer joining.


2005 ◽  
Vol 127 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Slawomir Rubinsztajn ◽  
Donald Buckley ◽  
John Campbell ◽  
David Esler ◽  
Eric Fiveland ◽  
...  

Flip chip technology is one of the fastest growing segments of electronic packaging with growth being driven by the demands such as cost reduction, increase of input/output density, package size reduction and higher operating speed requirements. Unfortunately, flip chip package design has a significant drawback related to the mismatch of coefficient of thermal expansion (CTE) between the silicon die and the organic substrate, which leads to premature failures of the package. Package reliability can be improved by the application of an underfill. In this paper, we report the development of novel underfill materials utilizing nano-filler technology, which provides a previously unobtainable balance of low CTE and good solder joint formation.


Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

Microsystem packages continue to demand lower cost, higher reliability, better performance and smaller size. Compliant wafer-level interconnects show great potential for next-generation packaging. G-Helix, an electroplated compliant wafer-level chip-to-substrate interconnect can facilitate wafer-level probing as well as wafer-level packaging without the need for an underfill. The fabrication of the G-Helix interconnect is similar to conventional IC fabrication process and is based on electroplating and photolithography. G-Helix interconnect has good mechanical compliance in the three orthogonal directions and can accommodate the differential displacement induced by the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate. In this paper, we report the wafer-level fabrication of an area-arrayed G-Helix interconnects. The geometry effect on the mechanical compliance and electrical parasitics of G-Helix interconnects have been studied. Thinner and narrower arcuate beams with larger radius and taller post are found to have better mechanical compliance. However, it is also found that structures with excellent mechanical compliance may not have good electrical performance. Therefore, a trade off is needed. Using response surface methodology (RSM), an optimization has been done, and the optimal compliant G-Helix interconnect will have a total standoff height of 64 μm, radius of 36 μm and cross-section area of 93 μm2.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Sign in / Sign up

Export Citation Format

Share Document