scholarly journals Predicted Melt Curve and Liquid Shear Viscosity of RDX up to 30 GPa

Author(s):  
Matthew Kroonblawd ◽  
H. Keo Springer

Recent grain scale simulations of HMX and TATB have shown that predictions for hot spot formation in high explosives are particularly sensitive to accurate determinations of the pressure-dependent melt curve and the shear viscosity of the liquid phase. These physics terms are poorly constrained beyond ambient pressure for the explosive RDX. We adopt an all-atom modeling approach using molecular dynamics (MD) simulations to predict the melt curve of RDX near to detonation conditions (30 GPa) and determine the shear viscosity of the liquid as a function of temperature and pressure above the melt curve. Phase-coexistence simulations were used to determine the melt curve, which is predicted to vary by almost 1100 K as the pressure increases from 0 GPa to 30 GPa. Equilibrium MD simulations and the Green-Kubo formalism were used to obtain the pressure-temperature dependent shear viscosity. The shear viscosity of RDX is predicted to be of similar magnitude to the viscosity of TATB at low GPa-range pressures, and to be roughly an order of magnitude lower than the viscosity of HMX. The temperature dependence of the shear viscosity is Arrhenius at a given pressure, and the exponential pre-factor and activation term exhibit a strong, yet complicated, pressure dependence. An empirical pressure-temperature dependent function for RDX shear viscosity is developed that simultaneously captures a wide range of MD predictions while taking an analytic form that extrapolates smoothly beyond the fitted regime. The relative strength of the pressure and temperature dependencies of these two physics terms is found to be of similar magnitude for RDX, HMX, and TATB, which motivates incorporating these results in future RDX grain scale modeling.

1999 ◽  
Vol 565 ◽  
Author(s):  
Anurag Jain ◽  
Svetlana Rogojevic ◽  
Satya V. Nitta ◽  
Venumadhav Pisupatti ◽  
William N. Gill ◽  
...  

AbstractSurface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.


Author(s):  
Yongsheng Leng ◽  
Peter T. Cummings

Molecular dynamics (MD) simulations have been performed to investigate the structure, shear viscosity and dynamics of hydration layers of the thickness of D = 0.61 ∼ 2.44 nm confined between two mica surfaces. For D = 0.92 ∼ 2.44 nm films, water O density distributions indicate that the hydration layers are in liquid phase. The corresponding shear responses are fluidic and similar to those observed in surface force balance (SFB) experiment. However, further increase in confinement leads to the formation of a bilayer ice (D = 0.61 nm) which shows significant shear enhancement and shear thinning over a wide range of shear rate in MD regime, consistent with recent experimental results by shear resonant apparatus for the two mica surfaces in registry.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
Fortunato Pezzimenti ◽  
Hichem Bencherif ◽  
Giuseppe De Martino ◽  
Lakhdar Dehimi ◽  
Riccardo Carotenuto ◽  
...  

A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V.


2021 ◽  
Vol 11 (5) ◽  
pp. 401
Author(s):  
Catherine A. Hoover ◽  
Kendahl L. Ott ◽  
Heather R. Manring ◽  
Trevor Dew ◽  
Maegen A. Borzok ◽  
...  

Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation ‘hot-spot’ within the NH2-terminal third of the DSP protein (specifically, residues 299–515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447–451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation—tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This ‘molecular band-aid’ provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 917
Author(s):  
Limengnan Zhou ◽  
Hongyu Han ◽  
Hanzhou Wu

Reversible data hiding (RDH) has become a hot spot in recent years as it allows both the secret data and the raw host to be perfectly reconstructed, which is quite desirable in sensitive applications requiring no degradation of the host. A lot of RDH algorithms have been designed by a sophisticated empirical way. It is not easy to extend them to a general case, which, to a certain extent, may have limited their wide-range applicability. Therefore, it motivates us to revisit the conventional RDH algorithms and present a general framework of RDH in this paper. The proposed framework divides the system design of RDH at the data hider side into four important parts, i.e., binary-map generation, content prediction, content selection, and data embedding, so that the data hider can easily design and implement, as well as improve, an RDH system. For each part, we introduce content-adaptive techniques that can benefit the subsequent data-embedding procedure. We also analyze the relationships between these four parts and present different perspectives. In addition, we introduce a fast histogram shifting optimization (FastHiSO) algorithm for data embedding to keep the payload-distortion performance sufficient while reducing the computational complexity. Two RDH algorithms are presented to show the efficiency and applicability of the proposed framework. It is expected that the proposed framework can benefit the design of an RDH system, and the introduced techniques can be incorporated into the design of advanced RDH algorithms.


2021 ◽  
pp. 1-12
Author(s):  
Haiyan Li ◽  
Zanxia Cao ◽  
Guodong Hu ◽  
Liling Zhao ◽  
Chunling Wang ◽  
...  

BACKGROUND: The ribose-binding protein (RBP) from Escherichia coli is one of the representative structures of periplasmic binding proteins. Binding of ribose at the cleft between two domains causes a conformational change corresponding to a closure of two domains around the ligand. The RBP has been crystallized in the open and closed conformations. OBJECTIVE: With the complex trajectory as a control, our goal was to study the conformation changes induced by the detachment of the ligand, and the results have been revealed from two computational tools, MD simulations and elastic network models. METHODS: Molecular dynamics (MD) simulations were performed to study the conformation changes of RBP starting from the open-apo, closed-holo and closed-apo conformations. RESULTS: The evolution of the domain opening angle θ clearly indicates large structural changes. The simulations indicate that the closed states in the absence of ribose are inclined to transition to the open states and that ribose-free RBP exists in a wide range of conformations. The first three dominant principal motions derived from the closed-apo trajectories, consisting of rotating, bending and twisting motions, account for the major rearrangement of the domains from the closed to the open conformation. CONCLUSIONS: The motions showed a strong one-to-one correspondence with the slowest modes from our previous study of RBP with the anisotropic network model (ANM). The results obtained for RBP contribute to the generalization of robustness for protein domain motion studies using either the ANM or PCA for trajectories obtained from MD.


1968 ◽  
Vol 46 (4) ◽  
pp. 623-633 ◽  
Author(s):  
R. S. Mann ◽  
K. C. Khulbe

The reaction between methylacetylene and hydrogen over unsupported nickel, copper, and their alloys has been investigated in a static constant volume system between 20 and 220 °C for a wide range of reactant ratios. The order of reaction with respect to hydrogen was one and nearly independent of temperature. While the order of reaction with respect to methylacetylene over nickel catalyst was slightly negative and temperature dependent, it was always positive and nearly independent of temperature for copper and copper-rich alloys. Selectivity was independent of initial hydrogen pressure for nickel and copper only; for others it decreased rapidly with increasing hydrogen pressure. The overall activation energy varied between 9 and 21.2 kcal/g mole. Selectivity and extent of polymerization increased with increasing amount of copper in the alloy.


2002 ◽  
Vol 124 (4) ◽  
pp. 762-770 ◽  
Author(s):  
G. S. Zhu ◽  
S. K. Aggarwal

This paper reports a numerical investigation of the transcritical droplet vaporization phenomena. The simulation is based on the time-dependent conservation equations for liquid and gas phases, pressure-dependent variable thermophysical properties, and a detailed treatment of liquid-vapor phase equilibrium at the droplet surface. The numerical solution of the two-phase equations employs an arbitrary Eulerian-Lagrangian, explicit-implicit method with a dynamically adaptive mesh. Three different equations of state (EOS), namely the Redlich-Kwong (RK), the Peng-Robinson (PR), and Soave-Redlich-Kwong (SRK) EOS, are employed to represent phase equilibrium at the droplet surface. In addition, two different methods are used to determine the liquid density. Results indicate that the predictions of RK-EOS are significantly different from those obtained by using the RK-EOS and SRK-EOS. For the phase-equilibrium of n-heptane-nitrogen system, the RK-EOS predicts higher liquid-phase solubility of nitrogen, higher fuel vapor concentration, lower critical-mixing-state temperature, and lower enthalpy of vaporization. As a consequence, it significantly overpredicts droplet vaporization rates, and underpredicts droplet lifetimes compared to those predicted by PR and SRK-EOS. In contrast, predictions using the PR-EOS and SRK-EOS show excellent agreement with each other and with experimental data over a wide range of conditions. A detailed investigation of the transcritical droplet vaporization phenomena indicates that at low to moderate ambient temperatures, the droplet lifetime first increases and then decreases as the ambient pressure is increased. At high ambient temperatures, however, the droplet lifetime decreases monotonically with pressure. This behavior is in accord with the reported experimental data.


Author(s):  
Enes Tamdogan ◽  
Mehmet Arik ◽  
M. Baris Dogruoz

With the recent advances in wide band gap device technology, solid-state lighting (SSL) has become favorable for many lighting applications due to energy savings, long life, green nature for environment, and exceptional color performance. Light emitting diodes (LED) as SSL devices have recently offered unique advantages for a wide range of commercial and residential applications. However, LED operation is strictly limited by temperature as its preferred chip junction temperature is below 100 °C. This is very similar to advanced electronics components with continuously increasing heat fluxes due to the expanding microprocessor power dissipation coupled with reduction in feature sizes. While in some of the applications standard cooling techniques cannot achieve an effective cooling performance due to physical limitations or poor heat transfer capabilities, development of novel cooling techniques is necessary. The emergence of LED hot spots has also turned attention to the cooling with dielectric liquids intimately in contact with the heat and photon dissipating surfaces, where elevated LED temperatures will adversely affect light extraction and reliability. In the interest of highly effective heat removal from LEDs with direct liquid cooling, the current paper starts with explaining the increasing thermal problems in electronics and also in lighting technologies followed by a brief overview of the state of the art for liquid cooling technologies. Then, attention will be turned into thermal consideration of approximately a 60W replacement LED light engine. A conjugate CFD model is deployed to determine local hot spots and to optimize the thermal resistance by varying multiple design parameters, boundary conditions, and the type of fluid. Detailed system level simulations also point out possible abatement techniques for local hot spots while keeping light extraction at maximum.


Sign in / Sign up

Export Citation Format

Share Document