Tensile Property of Cold-Rolled Foils of Ni-Based and Co-Based L12 Intermetallic Alloys

2006 ◽  
Vol 980 ◽  
Author(s):  
Yasuyuki Kaneno ◽  
Takayuki Takasugi ◽  
Tadamichi Myoki

AbstractPolycrystalline L12-type Ni3(Si,Ti), Co3Ti and Ni3Al alloys prepared through the thermomechanical process from arc-melted ingots were successfully cold-rolled to thin foils with a thickness of below 200μm. The cold-rolling with over 90% reduction in thickness was possible without providing intermediate annealing. The cold-rolled foils showed high tensile strength (~2GPa) at room temperature due to heavily cold rolling although no plastic elongation was observed. Room temperature tensile elongation increased with increasing annealing temperature, and reached to ~30-40% by high temperature annealing at 1173K. Among three kinds of intermetallic alloys, the Ni3(Si,Ti) foil annealed around at 900K exhibited an extremely high tensile strength and yield strength (over 2GPa) with a reasonable tensile elongation. The observed tensile properties, especially tensile strength at low temperature for the present intermetallic foils were found to be superior to those for the conventional alloys such as nickel based alloys and stainless steels.

2007 ◽  
Vol 561-565 ◽  
pp. 411-414 ◽  
Author(s):  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

Nb and/or Cr added Ni3(Si,Ti) as well as unalloyed Ni3(Si,Ti) intermetallic thin foils (i.e., Ni3(Si,Ti), Ni3(Si,Ti)+Nb, Ni3(Si,Ti)+Cr and Ni3(Si,Ti)+Nb,Cr) were fabricated from arc-melted polycrystalline ingots by thermomechanical process and subsequent heavy cold-rolling. Tensile property at room temperature as well as at high temperature and oxidization behavior of the cold-rolled foils with a thickness of ~200μm were investigated. The Ni3(Si,Ti) and Ni3(Si,Ti)+Nb alloys showed a single-phase microstructure consisting of L12 phase, while the Ni3(Si,Ti)+Cr and Ni3(Si,Ti)+Nb,Cr alloys exhibited a two-phase microstructure with A1 (fcc) Ni solid solution phase within the L12 grains. All the cold-rolled foils showed high tensile strength (over 2GPa) at room temperature although no plastic elongation was observed. The addition of Nb and/or Cr slightly enhanced the room-temperature tensile strength of the Ni3(Si,Ti) alloy. On the other hand, the addition of Nb and/or Cr prominently enhanced high-temperature tensile strength as well as oxidization resistance, while the addition of Cr improved high-temperature elongation.


2007 ◽  
Vol 561-565 ◽  
pp. 395-398 ◽  
Author(s):  
N. Matsumoto ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

Zr and/or Nb added Fe3Al based intermetallic alloys (i.e., Fe3Al-Zr, Fe3Al-Nb and Fe3Al-Zr-Nb) were arc-melted, homogenized, hot-rolled and then annealed to evaluate microstructure and tensile property at room temperature as well as at a high temperature (873K). After annealing, the rolled alloys exhibited a recrystallized microstructure containing coarse second phase particles, except for the Nb-added alloy with a minor content of Nb. Relatively high tensile elongation as well as high tensile strength was observed at room temperature in the Zr-added alloys with a minor amount of Zr. Also, these alloys showed relatively high tensile strength and elongation at high temperature (873K). The results suggest that tensile ductility as well as strength of Fe3Al-based alloys can be improved by introduction of the second phase dispersions.


2018 ◽  
Vol 921 ◽  
pp. 231-235
Author(s):  
Ke Bin Sun ◽  
Yan Feng Li ◽  
Ye Xin Jiang ◽  
Guo Jie Huang ◽  
Xue Shuai Li ◽  
...  

Copper foils with 91% cold rolled deformation annealed at temperature between 140°C and 170 °C.The microstructures were observed by EBSD. The mechanical properties were measured at room temperature by tensile test machine and the fracture morphologies observed by SEM. After annealed at 150 °C, recrystallization begins to occur, while the elongation increases evidently and tensile strength decreases sharply. When the temperature rises to 170 °C, recrystallization is complete and the grain starts to grow. When the foils are annealed at 140 °C, it exhibits a strong cold rolling textures characterized by Brass {011}<211> and Cu {112}<111>. After annealed at 170 °C, there are olny weak Brass {011}<211> texture.


2015 ◽  
Vol 817 ◽  
pp. 283-287
Author(s):  
Jing Fan Hua ◽  
Ren Bo Song ◽  
San Chuan Yu ◽  
Zhe Gao ◽  
Wei Jie Wanglin

The effect of annealing temperature on microstructures and mechanical properties of 1000MPa grade cold rolling steel was studied under the condition of ultra-fast cooling in the present investigation. The component of the experimental steel has been designed and the carbon content is 0.13%[wt]. A small amount of V and Nb were added to the steel. Simulated annealing steel experiment has been carried out in the laboratory condition. The experimental steel was heated to 780°C, 800°C, 820°C, 840°C, 860°C for 80s, then slowly cooled to 680°C, and finally water quenched to room temperature. The aging temperature was 240°C(for 240s) and then the steel was air cooled to room temperature. Using optical microscope, scanning electron microscopy (SEM) and tensile testing machine to analyze and test the microstructures and properties of the steel after annealing process. The result showed that the microstructures of the annealed steel was martensite and ferrite, and when the annealing temperature was 820°C, the tensile strength could reach 999MPa, elongation could reach 13.3%. It was easy to see that the tensile strength increased and the elongation decreased with the increase of annealing temperature.


2009 ◽  
Vol 282 ◽  
pp. 9-16
Author(s):  
M.N. Mungole ◽  
M. Surender ◽  
R. Balasubramaniam ◽  
S. Bhargava

9Cr-1Mo ferritic steel samples containing 0.2 and 0.5 wt % silicon in 40 % cold rolled state were recrystallize-annealed at 1100, 1200 and 1300 K. The grain growth and mechanical properties after recrystallization-annealing for 20 hr to 100 hr were investigated. No significant grain growth was observed even after 100 hr annealing at 1100 and 1200 K. The recrystallization-annealing at 1200 K resulted grains smaller in size than those at 1100 K. Annealing at 1300 K exhibited the enhanced grain growth with decorative microstructures. Initial annealing after cold rolling at 1100 K exhibited low hardness which further increased with annealing temperature. Annealing at 1100 K for 20 hrs exhibited low yield strength and ultimate tensile strength compared to those of as received samples. However, for 100 hrs annealing these properties remained nearly constant for 0.2 Si composition and increased marginally for 0.5 Si composition. Recrystallization-annealing exhibited improved ductility for both the compositions.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Y. Fujimoto ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

AbstractFour kinds of L12-type Ni3(Si,Ti) intermetallic alloys with a quaternary element X (X: Al, Cr, Co and Mo) were warm rolled accompanied by intermediate annealing and then cold rolled to thin foils. The effects of alloying element on microstructure, tensile properties and oxidation resistance of the cold-rolled Ni3(Si,Ti) foils were investigated. The Al-added Ni3(Si,Ti) alloy showed an L12 single-phase microstructure, while the Cr-, Co- and Mo-added Ni3(Si,Ti) alloys exhibited a two-phase microstructure consisting of L12 and fcc Ni solid solution phases. Room-temperature strength of the Ni3(Si,Ti) foils was slightly enhanced by the addition of quaternary element, whereas high-temperature strength was significantly enhanced especially by the addition of Mo and Co. High-temperature tensile elongation was remarkably improved by the addition of all the elements investigated. On the other hand, oxidation resistance was improved by the addition of Al and Cr.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5975
Author(s):  
Jae-Hwan Kim ◽  
Jong-Min Jung ◽  
Hyunbo Shim

The tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si alloys were investigated. The martensitic transformation was identified, including surface relief with a specific orientation and partial intersection. Besides, as the cold rolling degree increased, the volume fraction of ε-martensite increased, whereas α’-martensite started to form at the cold rolling degree of 15% and slightly increased to 6% at the maximum cold rolling degree. This difference may be caused by high austenite stability by adding alloying elements (Mn and Ni). As the cold rolling degree increased, the tensile strength linearly increased, and the elongation decreased due to the fractional increment in the volume of martensite. However, the damping capacity increased until a 30% cold rolling degree was approached, and then decreased. The irregular tendency of the damping capacity was confirmed, depicting that it increased to a specific degree and then decreased as the tensile strength and elongation increased. Concerning the relationship between the tensile properties and the damping capacity, the damping capacity increased and culminated, and then decreased as the tensile properties and elongation increased. The damping capacity in the high-strength area tended to decrease because it is difficult to dissipate vibration energy into thermal energy in alloys with high strength. In the low-strength area, on the other hand, the damping capacity increased as the strength increased since the increased volume fraction of ε-martensite is attributed to the increase in the damping source.


2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


2012 ◽  
Vol 715-716 ◽  
pp. 649-654 ◽  
Author(s):  
Lieven Bracke ◽  
Nieves Cabañas-Poy

The static recrystallisation behaviour of cold rolled and annealed TWinning Induced Plasticity (TWIP) steels is important for its industrial production. The recrystallisation kinetics have been determined for an Fe-Mn-C-Si-Al TWIP steel using hardness measurements and microstructure analysis: it has been shown that recrystallisation progresses rapidly with increased annealing temperature. Recrystallisation was faster at higher cold reductions, and a smaller final grain size was observed at lower annealing temperatures. This indicates that the mechanism is nucleation dominated at lower temperatures; grain growth at higher temperatures appears similar for all reductions. The recrystallisation results in a crystallographic texture where the main components of the cold rolling texture are preserved in the final texture after annealing, although some randomisation was observed.


Sign in / Sign up

Export Citation Format

Share Document