scholarly journals SEA CUCUMBER AS ANTICANCER AGENTS AND ITS DEVELOPMENT FOR FUNCTIONAL FOOD PRODUCTS

Author(s):  
Sherly Ridhowati ◽  
Fransiska Rungkat Zakaria ◽  
Dahrul Syah ◽  
Ekowati Chasanah

Indonesia is popularly known as sea cucumber (teripang) exporter in the form of dried teripang. Commonly known as beche-de-mer or gamat, sea cucumber has long been used as medicine and food by Asian and Middle East people. Recent study  has shown that sea cucumbers contain active compounds that show potential health benefits and other biological properties such as antibacterial and antifungal products, anticoagulants, antihypertensives, immuno modulation, inhibitor of osteoclastogenesis. It was reported that sea cucumber posses aphrodisiacs, potentially improve immunity, anticancer and anticoagulation. Sea cucumber is also rich in collagen as a component of connective  tissue which can further be converted into smaller molecule and act as bioactive substances. This  review presents  the potential of sea cucumber as a functional food especially to prevent cancer and  strategy to develop sea cucumber-based functional food  by enzymatic hydrolysis and in vivo study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Wei ◽  
Xiao-Man Fan ◽  
Shao-Hui Jia ◽  
Xi-Ping Zhang ◽  
Zhao Zhang ◽  
...  

Sea cucumbers are one of many marine echinoderm animals that contain valuable nutrients and medicinal compounds. The bioactive substances in sea cucumbers make them have promising biological and pharmacological properties, including antioxidant, anti-bacterial, and anti-tumor effects. In this study, sea cucumber intestinal peptide (SCIP) is a small molecular oligopeptide (<1,000 Da) extracted from sea cucumber intestines hydrolyzed by alkaline protease. The analysis of amino acid composition showed that hydrophobic amino acids and branched-chain amino acids were rich in SCIP. Nowadays, although increasing studies have revealed the biological functions of the sea cucumber active substances, there are few studies on the function of SCIP. Furthermore, due to the anti-cancer activity being an essential characteristic of sea cucumber active substances, we also investigated the anti-cancer potential and the underlying mechanism of SCIP in vivo and in vitro. The results indicate that SCIP inhibits the growth of MCF-7 tumor cells in zebrafish and increases the apoptosis of human breast cancer MCF-7 cells. Further mechanism studies confirm that SCIP promotes the expression of apoptosis-related proteins and thus promotes the breast cancer cells (MCF-7) apoptosis via inhibition of PI3K/AKT signal transduction pathway.



Author(s):  
C. B. Ranaweera ◽  
A. K. Chandana

Clitoria ternatea commonly known as Butterfly pea is a standard Ayurvedic medicinal plant used in many parts of south Asian countries. Traditional medicinal plants are a great alternative to find new treatments and for the development of novel antimicrobials to combat many diseases. In Ayurveda and traditional and folk medicine in several countries, decoction and extracts made from C. ternatea are recommended to be used for various medical treatments. C. ternatea extracts claimed to possess antibacterial, antiviral, and antifungal properties, which had been supported and validated by many in vitro and in vivo experiments. However, biologically active compound/s isolation and development novel compounds still remain in its infancy. Despite its enormous potential health benefits, only a single commercial product managed to reach industrial level production. C. ternatea cyclotide studies are also limited despite the fact that it the fastest known natural ligase discovered to date. These cyclotides are rapid peptide ligators and has been the focus of many recent studies on peptide ligation and cyclization for biotechnological applications. In this mini summary we have tried to point out innate unique biological properties of C. ternatea and suggested few future studies, more specifically on C. ternatea cyclotides development against bacterial heat shock proteins (Hsp 100) for novel antimicrobial discovery and development.



2021 ◽  
Vol 25 ◽  
Author(s):  
Parul Grover ◽  
Monika Bhardwaj ◽  
Garima Kapoor ◽  
Lovekesh Mehta ◽  
Roma Ghai ◽  
...  

: The heterocyclic compounds have a great significance in medicinal chemistry because they have extensive biological activities. Cancer is globally the leading cause of death and it is a challenge to develop an appropriate treatment for the management of cancer. Continuous efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogen-containing heterocycles have received noteworthy attention due to their wide and distinctive pharmacological activities. One of the most important nitrogen-containing heterocycles in medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties. This scaffold is an important pharmacophore and is considered a privileged structure. The various substituted quinazolines displayed anticancer activity against different types of cancer. This review highlights the recent advances in quinazoline based molecules as anticancer agents. Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline containing anticancer compounds is also incorporated in the review.



Author(s):  
Djoko Kisworo ◽  
Sukirno ◽  
Bulkaini

Abstract  Cancer is the main cause of death in the world with the number of sufferers in 2008 as many as 12.7 million with a death rate of 7.6 million people. In Indonesia, it is estimated that there are more than 1 million cancer patients in 2010. One of the ways to prevent cancer is primary prevention by adjusting the pattern and type of food consumed. Functional food introduced by bioactive components from sea cucumbers is an alternative for cancer prevention. The specific objective of this research was to produce meat-based functional foods containing anti-cancer compounds derived from sea cucumbers that can prevent cancer. The preliminary tests conducted were the sea cucumber extract lethality test against Artemia salina, namely the Brine Shrimp Lethality Test (BSLT), and the total bacteria of  beef meatballs. The results of the observation of the lathality of sea cucumber extract against Artemia salina and total bacteria of the meatball showed that the sea cucumber extract had high lathality against Artemia salina and was able to reduce the total bacteria in meatballs during storage period. The lathality of sea cucumber extract was strongly influenced or stimulated by heating treatment. Based on the BSLT test, of the five types of sea cucumbers, two of them (Holothuria similis and Pearsonothuria graeffei) have high lathality. Sea cucumber extract was also able to inhibit both bacterial and fungal growth in meatballs during storage at room temperature. Keywords: Beef Meatballs, Total Bacteria, Sea Cucumber, BSLT.



Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1270
Author(s):  
Adam Krain ◽  
Piotr Siupka

Guttation is a common phenomenon in the fungal kingdom. Its occurrence and intensity depend largely on culture conditions, such as growth medium composition or incubation temperature. As filamentous fungi are a rich source of compounds, possessing various biological activities, guttation exudates could also contain bioactive substances. Among such molecules, researchers have already found numerous mycotoxins, antimicrobials, insecticides, bioherbicides, antiviral, and anticancer agents in exudate droplets. They belong to either secondary metabolites (SMs) or proteins and are secreted with different intensities. The background of guttation, in terms of its biological role, in vivo, and promoting factors, has been explored only partially. In this review, we describe the metabolites present in fungal exudates, their diversity, and bioactivities. Pointing to the significance of fungal ecology and natural products discovery, selected aspects of guttation in the fungi are discussed.



Author(s):  
Wei Zhang ◽  
Tingting Weng ◽  
Qiong Li ◽  
Ronghua Jin ◽  
Chuangang You ◽  
...  

: Diseases, trauma, and injuries are highly prevalent conditions that lead to many critical tissue defects. Tissue engineering has great potentials to develop functional scaffolds that mimic natural tissue structures to improve or replace biological functions. In many kinds of technologies, electrospinning has received widespread attention for its outstanding functions, which is capable of producing nanofibre structures similar to the natural extracellular matrix. Amongst, the electrospinning of available biopolymers, poly (caprolactone) (PCL), has shown favorable outcomes for tissue regeneration applications. According to the characteristics of different tissues, PCL can be modified by altering the functional groups or combining with other materials such as synthetic polymers, natural polymers, and metal materials to improve its physicochemical, mechanical, and biological properties, making the electrospun scaffolds meet the requirements of different tissue engineering and regenerative medicine. Moreover, efforts have been made to modify nanofibres with several bioactive substances to provide cells with the necessary chemical cues and a more in vivo like environment. In this review, some recent developments in both the design and utility of electrospun PCL-based scaffolds in the fields of bone, cartilage, skin, tendon, ligament and nerve are highlighted, along with their potential impact on future research and clinical applications.



Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 946 ◽  
Author(s):  
Thanh Ninh Le ◽  
Chiu-Hsia Chiu ◽  
Pao-Chuan Hsieh

Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.



2021 ◽  
Vol 8 ◽  
Author(s):  
Alexander G. Dvoretsky ◽  
Vladimir G. Dvoretsky

Sea cucumbers are a popular luxury and delicacy food items in Asian markets. These echinoderms possess a wide range of bioactive substances that can be used to produce pharmaceutical products. Recent depletion of natural populations of sea cucumbers requires involving new objects both in commercial harvesting and aquaculture. The northern sea cucumber Cucumaria frondosa is the most abundant sea cucumber in the Barents Sea. In this paper, we summarized literature data on the biology of this polar species to evaluate its fishery and aquaculture potential in the area. This eurythermic sea cucumber is typically occurs at 20–100 m depth. Cucumaria mainly colonize rocky or pebbly bottoms. Their main food items are detritus, pellets, phytoplankton, and small planktonic crustaceans. Spawning is registered in February–May. The age of commercial specimens (body length 25–30 cm, wet weight 300–350 g) is 10 years. The most abundant stocks of C. frondosa are registered in the central and south-eastern parts of the sea. Due to the low growth rate of Cucumaria the most appropriate cultivation method for these holothurians is a combination of larval culture and sea ranching. Coastal sites of the Barents Sea merit all the criteria for sea ranching of Cucumaria, but the development of their extensive aquaculture requires significant investments with long pay-back periods.



2020 ◽  
Vol 21 ◽  
Author(s):  
Shailaja Dombe ◽  
Pramodkumar Shirote

Abstract: Cancer is the most ruinous disease globally. Natural products have impressive characteristics, such as excep-tional chemical versatility, chemical and biological properties of macromolecular specificity and less toxicity which make them good leads in finding novel drugs. The phytochemicals not only help to prevent but also treat chronic cancerous conditions. The present review attempts to put forth some selected anticancer phytochemicals that had reported omics char-acteristic and specifically suppressed cancer with in vitro and in vivo activity. Certain issues pertaining to anticancer phy-tochemicals like delivery to target site in the body and achieving controlled release in order to prevent overdoses havelong been a concern for medical researchers worldwide. The most conventional chemotherapy protocols for the treatment of cancer lead to adverse effects that limit biological efficacy and compromise patient outcomes. In order to defeat incompe-tency of current and upcoming natural anticancer agents and to attain targeted drug delivery with good efficacy and fewer side effects, there is a special focus on novel nanostructured particles and nano approaches consisting of carrier system. Recent studies have led to the discovery of mesoporous and nanoporous drug delivery mechanisms, such as inorganic or organic-based nanosponges. The metal based inorganic systems have exhibited toxicity and non-biodegradable character in vivo. As a result of problems related to inorganic systems, major shift of research from inorganic to organic nanosystems has occurred. About decades ago, researchers have developed organic nanosponges to control the limitation of drug delivery and cancer therapies. This review article discusses the development and application of nanosponges encapsulated phyto-chemicals for cancer therapy.



e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 75-86
Author(s):  
Dalia I. Sánchez-Machado ◽  
Jaime López-Cervantes ◽  
Diana M. Martínez-Ibarra ◽  
Ana A. Escárcega-Galaz ◽  
Claudia A. Vega-Cázarez

Abstract Chitosan is an amino-polysaccharide, traditionally obtained by the partial deacetylation of chitin from exoskeletons of crustaceans. Properties such as biocompatibility, hemostasis, and the ability to absorb physiological fluids are attributed to this biopolymer. Chitosan’s biological properties are regulated by its origin, polymerization degree, and molecular weight. In addition, it possesses antibacterial and antifungal activities. It also has been used to prepare films, hydrogels, coatings, nanofibers, and absorbent sponges, all utilized for the healing of skin wounds. In in vivo studies with second-degree burns, healing has been achieved in at least 80% of the cases between the ninth and twelfth day of treatment with chitosan coatings. The crucial steps in the treatment of severe burns are the early excision of damaged tissue and adequate coverage to minimize the risk of infection. So far, partial-thickness autografting is considered the gold standard for the treatment of full-thickness burns. However, the limitations of donor sites have led to the development of skin substitutes. Therefore, the need for an appropriate dermal equivalent that functions as a regeneration template for the growth and deposition of new skin tissue has been recognized. This review describes the properties of chitosan that validate its potential in the treatment of skin burns.



Sign in / Sign up

Export Citation Format

Share Document