scholarly journals Clitoria ternatea - Shifting Paradigms: From Laboratory to Industry

Author(s):  
C. B. Ranaweera ◽  
A. K. Chandana

Clitoria ternatea commonly known as Butterfly pea is a standard Ayurvedic medicinal plant used in many parts of south Asian countries. Traditional medicinal plants are a great alternative to find new treatments and for the development of novel antimicrobials to combat many diseases. In Ayurveda and traditional and folk medicine in several countries, decoction and extracts made from C. ternatea are recommended to be used for various medical treatments. C. ternatea extracts claimed to possess antibacterial, antiviral, and antifungal properties, which had been supported and validated by many in vitro and in vivo experiments. However, biologically active compound/s isolation and development novel compounds still remain in its infancy. Despite its enormous potential health benefits, only a single commercial product managed to reach industrial level production. C. ternatea cyclotide studies are also limited despite the fact that it the fastest known natural ligase discovered to date. These cyclotides are rapid peptide ligators and has been the focus of many recent studies on peptide ligation and cyclization for biotechnological applications. In this mini summary we have tried to point out innate unique biological properties of C. ternatea and suggested few future studies, more specifically on C. ternatea cyclotides development against bacterial heat shock proteins (Hsp 100) for novel antimicrobial discovery and development.

Author(s):  
Boris Andryukov ◽  
Natalya Besednova ◽  
Tatyana Kuznetsova ◽  
Tatyana Zaporozhets ◽  
Svetlana Ermakova ◽  
...  

Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on multifactorial processes. Wound treatment is a major healthcare issue that can be resolved by development of effective and affordable wound dressings based on natural materials and biologically active substances. Proper use of modern wound dressings can significantly accelerate wound healing with minimal cosmetic defects. The innovative biotechnologies for creating modern natural interactive dressings are based on sulfated polysaccharides from seaweeds with their unique structures and biological properties, the availability of their sources in the form of wild bushes, and in the form of aquaculture, as well as with a high potential for participation in process control wound healing. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The aim of this review is to summarize available information about the modern wound dressing’s technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with the emphasis on promising and innovative designs. The further prospect of using marine biopolymers is related to the need to analyze the results of numerous in vitro and in vivo experiments, summarize clinical trial data, develop a scientifically based approach and relevant practical recommendations for the treatment of wounds.


2020 ◽  
pp. 66-74
Author(s):  
Vanja Tadić ◽  
Nemanja Krgović ◽  
Ana Žugić

Lady's mantle (Alchemilla vulgaris L. syn. Alchemilla xanthochlora Rothm., Rosaceae) has been commonly used in folk medicine to heal inflammations in the mouth, bleeding of the nose, furuncules, gynaecological (menorrhagia and dysmenorrhoea), and gastrointestinal disorders. Although therapeutic indications for lady's mantle are non-specific diarrhoea and gastrointestinal complaints, it has been reported to exert, as well, a variety of biological activities, including wound healing, antimicrobial, neuroprotective, gastroprotective, cytotoxic, and antioxidant. Lady's mantle presents a valuable source of natural bioactive compounds, mostly phenolic compounds - a large amount of tannins, phenolcarboxylic acids, and flavonoids, being responsible for the abovementioned effects. In this work, a literature review of biological properties, investigated in in vitro and in vivo experiments in regard to the determined chemical profile is presented. In addition, the data reported are discussed, and the directions for further investigations are proposed.


2021 ◽  
Author(s):  
Raphaelle Delattre ◽  
Jeremy Seurat ◽  
Feyrouz Haddad ◽  
Thu-Thuy Nguyen ◽  
Baptiste Gaborieau ◽  
...  

The clinical (re)development of phage therapy to treat antibiotic resistant infections requires grasping specific biological properties of bacteriophages (phages) as antibacterial. However, identification of optimal dosing regimens is hampered by the poor understanding of phage-bacteria interactions in vivo. Here we developed a general strategy coupling in vitro and in vivo experiments with a mathematical model to characterize the interplay between phage and bacterial dynamics during pneumonia induced by a pathogenic strain of Escherichia coli. The model estimates some key parameters for phage therapeutic efficacy, in particular the impact of dose and route of administration on phage dynamics and the synergism of phage and the innate immune response on the bacterial clearance rate. Simulations predict a low impact of the intrinsic phage characteristics in agreement with the current semi-empirical choices of phages for compassionate treatments. Model-based approaches will foster the deployment of future phage therapy clinical trials.


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Bogdan Kędzia ◽  
Elżbieta Hołderna-Kędzia

The paper presents a review of the publications on the anticancerogenic activity of the biologically active component of propolis – caffeic acid phenethyl ester (CAPE). Literature data indicate numerous biological properties of CAPE, namely: antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic and others. In numerous tests, both in vitro and in vivo, the significant activity of CAPE has been confirmed, including an action against HT-29 human colon adenoma cells, and five: human, murine and other tumor cell cultures. The authors also emphasize that CAPE supports the anticancerogenic effect of drugs, including doxorubicin and cisplatin, due to the reduction of cancer cell survival by 45% and 34%, respectively, compared to the above-mentioned drugs used alone. The conducted research indicates that the induction of apoptosis in cells, i.e. programmed cell death, can be mentioned among the main mechanisms of the anticancerogenic activity of CAPE.


2020 ◽  
Vol 103 (2) ◽  
pp. 422-427
Author(s):  
Agata Święciło ◽  
Kamila Rybczyńska-Tkaczyk

Abstract Background: In addition to nutrients, plant raw materials for food production should also contain substances with beneficial biological properties, which unquestionably include antioxidant compounds. Among the numerous methods of determining the antioxidant properties of samples of plant material, biological methods that provide information about not only the in vivo antioxidant potential of samples but also their metabolism and bioavailability are increasingly valued. Objective: The aim of the study was to assess the antioxidant properties of extracts from large cranberry (Vaccinium macrocarpon) obtained from different producers. Methods: Biologically active compounds were extracted from cranberry fruits using water alone and ethyl alcohol–water in proportions of 1+1 and 4+1 (v/v) as solvents. The following were determined in the extracts: content of phenolic compounds and anthocyanins, total antioxidant capacity based on reduction of the ABTS+• [2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] radical cation, and antioxidant properties as reflected by the growth of a Saccharomyces cerevisiae Δsod1 mutant in a liquid hypertonic environment. The growth parameters of this Δsod1 mutant, monitored by a method exploiting a color reaction with resazurin, reflected the antioxidant properties of the extracts. Results: The ethanol–water cranberry extracts showed higher content of polyphenols, anthocyanins, and total antioxidants expressed as Trolox equivalent, determined on the basis of ABTS+• reduction. Conclusions: The antioxidant properties determined by the bioassay did not respond strongly to the data obtained in the in vitro chemical and biochemical assays, because they were more closely associated with the batch of fruit than with the type of solvent used to extract phytochemicals.


Planta Medica ◽  
2017 ◽  
Vol 84 (02) ◽  
pp. 123-128 ◽  
Author(s):  
Fang Wang ◽  
Huanhuan Zhong ◽  
Shiqi Fang ◽  
Yunfeng Zheng ◽  
Cunyu Li ◽  
...  

Abstract Eupatorium lindleyanum has traditionally been used as folk medicine in Asian countries for its therapeutic effects on tracheitis and tonsillitis. Investigation of the anti-inflammatory active constituents from E. lindleyanum led to the isolation of two novel sesquiterpene lactones, named eupalinolide L (1) and eupalinolide M (2), and seven known sesquiterpene lactones (3–9). The structures and configurations of the new compounds were determined on the basis of spectroscopic analysis, especially 2D NMR techniques. In vivo experiments showed that the sesquiterpenes fraction significantly reduced mouse ear edema induced by xylene (18.6%, p < 0.05). In in vitro assays, compounds 1–9 showed excellent anti-inflammatory activities, as they lowered TNF-α and IL-6 levels in lipopolysaccharide-stimulated murine macrophage RAW 264.7 cells (p < 0.001). The above results suggest that the sesquiterpene lactones from E. lindleyanum can be developed as novel potential natural anti-inflammatory agents.


Biomeditsina ◽  
2019 ◽  
pp. 33-40
Author(s):  
I. N. Smirnova ◽  
N. I. Suslov ◽  
I. A. Khlusov ◽  
K. V. Zaytsev ◽  
A. A. Gostyukhina ◽  
...  

This work was aimed at investigating the effect of maral antler powder on the activity of animal hematopoietic stem cells both in vivo and in vitro.For in vivo experiments based on the model of sleep deprivation, male mice of the CBA/CaLac line were used. Prior to the experiment, mice in the experimental and control groups were intragastrically administered with a water dispersion of a maral antler powder and distilled water, respectively. Subsequently, the extraction of bone marrow from the femur, cloning of erythro- and granulo-monocytopoiesis precursors and count of the number of cell colonies were performed. Experiments in vitro involved the extraction of bone marrow cells from the femur followed by their cultivation both in a culture containing a maral antler powder (experimental) and distilled water (control culture). The number of CFU was counted 7 days following the beginning of the experiment.Maral antlers are found to exhibit no noticeable modulating effect on the colony-forming activity of mouse hematopoietic stem cells in vitro. However, according to our in vivo experiments on mice, a preventive administration of an antler powder before a stressful infl uence (sleep deprivation) prevents suppression of erythropoiaesis processes, thus exhibiting a modulating effect on the activity of CFU-E and CFU-GM by increasing the number of CFU-E and reducing the number of CFU-GM by more than three times. The modulating effect of maral antlers on the activity of hematopoietic and stem cells is based on the infl uence of biologically active substances contained therein on the neuroendocrine regulation of the hematopoietic system occurring in living organisms. 


2021 ◽  
Vol 37 (3) ◽  
pp. 3-10
Author(s):  
L.I. Nikolaeva

Bifidobacteria occupy a special place among various representatives of normal human microbiota. A wide range of probiotic preparations has been obtained based on cultivated strains of various bifidobacteria of the intestinal microbiota. A number of scientific publications noted the immunomodulatory, anticarcinogenic, and antiviral properties of bifidobacteria in vitro and in vivo. Recently, progress has been made in the research and application of this group of microorganisms in genetic engineering. It was established that vaccines against viral and bacterial infections and antitumor substances can be developed on the basis of various strains of bifidobacteria. Bifidobacteria can also be used as adjuvants for other vaccines, as well as delivery systems for biologically active substances to tumors. The prospects for the use of bifidobacteria for the development of recombinant vaccines are discussed. bifidobacteria, medical and biological properties, recombinant vaccines, drug delivery, adjuvants, plasmids This work was funded by the Epidemiology and Microbiology National Research Center. The authors are grateful to V. V. Kuprianov for valuable comments on the text of the review.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 946 ◽  
Author(s):  
Thanh Ninh Le ◽  
Chiu-Hsia Chiu ◽  
Pao-Chuan Hsieh

Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.


Sign in / Sign up

Export Citation Format

Share Document