scholarly journals Inhibited growth of mesenchymal stem cells under simulated microgravity

2020 ◽  
Vol 18 (2) ◽  
pp. 257-264
Author(s):  
Ho Nguyen Quynh Chi ◽  
Hoang Nguyen Quang Huy ◽  
Doan Chinh Chung ◽  
Hoang Nghia Son ◽  
Le Thanh Long

This study aimed to estimate the effects of simulated microgravity (SMG) on mesenchymal stem cells (MSCs). The 3D clinostat was applied to induce to simulated microgravity on MSC. The results showed that the MSC density in control group was higher than the SMG group. The cell cycle analysis demonstrated that the MSC ratio in G0/G1 phase in SMG group was higher than that of the control group, while the MSC ratio in S phase and G2/M phase in SMG group was lower than those of the control group. The real time quantitative RT-PCR was used to evaluate the expression of cell cycle-related genes, including Cyclin-dependent kinase 2 (Cdk2), Cyclin-dependent kinase 6 (Cdk6), and Cyclin A. The results showed that the transcript expression of Cdk2, Cdk6, and Cyclin A was down-regulated in MSC from SMG group comparing to that of the control group. The flow cytometry was performed to determine the ratio of apoptotic MSCs. There was no significant difference in viability ratio and apoptotic ratio of MSCs between SMG group and control group. The MSCs from SMG group and control group showed similar in Bcl2 and Bax transcript expression.

2020 ◽  
pp. 897-906
Author(s):  
H CHI ◽  
H SON ◽  
D CHUNG ◽  
L HUAN ◽  
T DIEM ◽  
...  

The cytoskeleton plays a key role in cellular proliferation, cell-shape maintenance and internal cellular organization. Cells are highly sensitive to changes in microgravity, which can induce alterations in the distribution of the cytoskeletal and cell proliferation. This study aimed to assess the effects of simulated microgravity (SMG) on the proliferation and expression of major cell cycle-related regulators and cytoskeletal proteins in human umbilical cord mesenchymal stem cells (hucMSCs). A WST-1 assay showed that the proliferation of SMG-exposed hucMSCs was lower than a control group. Furthermore, flow cytometry analysis demonstrated that the percentage of SMG-exposed hucMSCs in the G0/G1 phase was higher than the control group. A western blot analysis revealed there was a downregulation of cyclin A1 and A2 expression in SMG-exposed hucMSCs as well. The expression of cyclin-dependent kinase 4 (cdk4) and 6 (cdk6) were also observed to be reduced in the SMG-exposed hucMSCs. The total nuclear intensity of SMG-exposed hucMSCs was also lower than the control group. However, there were no differences in the nuclear area or nuclear-shape value of hucMSCs from the SMG and control groups. A western blot and quantitative RT-PCR analysis showed that SMG-exposed hucMSCs experienced a downregulation of β-actin and α-tubulin compared to the control group. SMG generated the reorganization of microtubules and microfilaments in hucMSCs. Our study supports the idea that the downregulation of major cell cycle-related proteins and cytoskeletal proteins results in the remodeling of the cytoskeleton and the proliferation of hucMSCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Man Amanat ◽  
Anahita Majmaa ◽  
Morteza Zarrabi ◽  
Masoumeh Nouri ◽  
Masood Ghahvechi Akbari ◽  
...  

Abstract Background This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. Methods Participants (4–14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). Results There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen’s d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen’s d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (−1.0; 95%CI −1.31, −0.69) and control (β −0.72; 95%CI −1.18, −0.26; Cohen’s d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST −0.035 × 10-3; 95%CI −0.04 × 10-3, −0.02 × 10-3. PTR −0.045 × 10-3; 95%CI −0.05 × 10-3, −0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. Conclusions The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. Trial registration The study was registered with ClinicalTrials.gov (NCT03795974).


2017 ◽  
Vol 7 (1) ◽  
pp. 176
Author(s):  
Maryam Sadat Nezhadfazel ◽  
Kazem Parivar ◽  
Nasim Hayati Roodbari ◽  
Mitra Heydari Nasrabadi

Omentum mesenchymal stem cells (OMSCs) could be induced to differentiate into cell varieties under certain conditions. We studied differentiation of OMSCs induced by using placenta extract in NMRI mice. Mesenchymal stem cells (MSCs) were isolated from omentum and cultured with mice placenta extract. MSCs, were assessed after three passages by flow cytometry for CD90, CD44, CD73, CD105, CD34 markers and were recognized their ability to differentiate into bone and fat cell lines. Placenta extract dose was determined with IC50 test then OMSCs were cultured in DMEM and 20% placenta extract.The cell cycle was checked. OMSCs were assayed on 21 days after culture and differentiated cells were determined by flow cytometry and again processed for flow cytometry. CD90, CD44, CD73, CD105 markers were not expressed, only CD34 was their marker. OMSCs were morphologically observed. Differentiated cells are similar to the endothelial cells. Therefore, to identify differentiated cells, CD31 and FLK1 expression were measured. This was confirmed by its expression. G1 phase of the cell cycle shows that OMSCs compared to the control group, were in the differentiation phase. The reason for the differentiation of MSCs into endothelial cells was the sign of presence of VEGF factor in the medium too high value of as a VEGF secreting source.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247662
Author(s):  
Jingjing He ◽  
Desheng Kong ◽  
Zhifen Yang ◽  
Ruiyun Guo ◽  
Asiamah Ernest Amponsah ◽  
...  

Background Diabetes mellitus as a chronic metabolic disease is threatening human health seriously. Although numerous clinical trials have been registered for the treatment of diabetes with stem cells, no articles have been published to summarize the efficacy and safety of mesenchymal stem cells (MSCs) in randomized controlled trials (RCTs). Methods and findings The aim of this study was to systematically review the evidence from RCTs and, where possible, conduct meta-analyses to provide a reliable numerical summary and the most comprehensive assessment of therapeutic efficacy and safety with MSCs in diabetes. PubMed, Web of Science, Ovid, the Cochrane Library and CNKI were searched. The retrieval time was from establishment of these databases to January 4, 2020. Seven RCTs were eligible for analysis, including 413 participants. Meta-analysis results showed that there were no significant differences in the reduction of fasting plasma glucose (FPG) compared to the baseline [mean difference (MD) = -1.05, 95% confidence interval (CI) (-2.26,0.16), P<0.01, I2 = 94%] and the control group [MD = -0.62, 95%CI (-1.46,0.23), P<0.01, I2 = 87%]. The MSCs treatment group showed a significant decrease in hemoglobin (Hb) A1c [random-effects, MD = -1.32, 95%CI (-2.06, -0.57), P<0.01, I2 = 90%] after treatment. Additionally, HbA1c reduced more significantly in MSC treatment group than in control group [random-effects, MD = -0.87, 95%CI (-1.53, -0.22), P<0.01, I2 = 82%] at the end of follow-up. However, as for fasting C-peptide levels, the estimated pooled MD showed that there was no significant increase [MD = -0.07, 95%CI (-0.30, 0.16), P<0.01, I2 = 94%] in MSCs treatment group compared with that in control group. Notably, there was no significant difference in the incidence of adverse events between MSCs treatment group and control group [relative risk (RR) = 0.98, 95%CI (0.72, 1.32), P = 0.02, I2 = 70%]. The most commonly observed adverse reaction in the MSC treatment group was hypoglycemia (29.95%). Conclusions This meta-analysis revealed MSCs therapy may be an effective and safe intervention in subjects with diabetes. However, due to the limited studies, a number of high-quality as well as large-scale RCTs should be performed to confirm these conclusions.


Author(s):  
Nur Anna C Sa’dyah ◽  
Agung Putra ◽  
Bayu Tirta Dirja ◽  
Nurul Hidayah ◽  
Salma Yasmine Azzahara ◽  
...  

Introduction<br />Liver fibrosis (LF) results from the unregulated chronic wound healing process in liver tissue. Transforming growth factor-beta (TGF-β) is the major contributing cytokine of LF promotion through activation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (MFs) and increased extracellular matrix (ECM) deposition such as collagen leading to scar tissue development. Mesenchymal stem cells (MSCs) have an immunomodulatory capability that could be used as a new treatment for repairing and regenerating LF through suppression of TGF-β. This study aimed to examine the role of MSCs in liver fibrosis animal models through suppression of TGF-β levels without scar formation particularly in the proliferation phase.<br /><br />Methods<br />In this study, a completely randomized design was used with sample size of 24. Male Sprague Dawley rats were injected intraperitoneally (IP) with carbon tetrachloride (CCl4), twice weekly, for eight weeks to induce LF. Rats were randomly assigned to four groups: negative control, CCl4 group, and CCL4 + MSC-treated groups T1 and T2, at doses of 1 x 106 and 2x106 cells, respectively. TGF-β levels were analyzed by enzyme-linked immunosorbent assay (ELISA). One-way ANOVA and a least significant difference (LSD) was used to analyse the data. <br /><br />Results<br />The TGF levels of LF rat models decreased on day 7 after MSC administration. The levels of TGF-β in both MSC groups T1 and T2 decreased significantly compared with the control group (p&lt;0.05). The TGF-β suppression capability of T2 was optimal and more significant than that of T1.<br /><br />Conclusion<br />MSCs can suppress TGF levels in liver fibrosis induced rats.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000011440
Author(s):  
Jong-Won Chung ◽  
Won Hyuk Chang ◽  
Oh Young Bang ◽  
Gyeong Joon Moon ◽  
Suk Jae Kim ◽  
...  

ObjectiveTo test whether autologous modified mesenchymal stem cells (MSCs) improve recovery in patients with chronic major stroke.MethodsIn this prospective, open-label, randomized controlled trial with blinded outcome evaluation, patients with severe middle cerebral artery territory infarct within 90 days of symptom onset were assigned, in a 2:1 ratio, to receive preconditioned autologous MSC injections (MSC group) or standard treatment alone (control group). The primary outcome was the score on the modified Rankin Scale (mRS) at 3 months. The secondary outcome was to further demonstrate motor recovery.ResultsA total of 39 and 15 patients were included in the MSC and control groups, respectively, for the final intention-to-treat analysis. Mean age of patients was 68 (range, 28–83) years, and mean interval between stroke onset to randomization was 20.2 (range, 5–89) days. Baseline characteristics were not different between groups. There was no significant difference between the groups in the mRS score shift at 3 months (p = 0.732). However, secondary analyses showed significant improvements in lower extremity motor function in the MSC group compared to the control group (change in the leg score of the Motricity Index, p = 0.023), which was notable among patients with low predicted recovery potential. There were no serious, treatment-related adverse events.ConclusionsIntravenous application of preconditioned, autologous MSCs with autologous serum was feasible and safe in patients with chronic major stroke. MSC treatment was not associated with improvements in the 3-month mRS score, but we did observe leg motor improvement in detailed functional analyses.Classification of evidenceThis study provides Class III evidence that autologous mesenchymal stem cells do not improve 90-day outcomes in patients with chronic stroke.Trial registrationclinicaltrials.gov Identifier: NCT01716481.


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Boris Popov ◽  
Nikolai Petrov ◽  
Vladimir Ryabov ◽  
Igor Evsyukov

An effective regulation of quiescence plays a key role in the differentiation, plasticity, and prevention of stem cells from becoming malignant. The state of quiescence is being controlled by the pRb family proteins which show overlapping functions in cell cycle regulation; however, their roles in controlling the proliferation of mesenchymal stem cells (MSCs) remain to be understood. This study investigated the regulation of transient quiescence using growth curves, proliferation assay, the cytometric evaluation of cell cycle, Western blotting, and the electromobility gel shift assay (EMSA) on synchronized MSCs of the C3H10Т1/2 and control cells with different statuses of pRb proteins. It has been found that functional steady-state level of p130 but not pRb plays a critical role for entering, exiting, and maintenance of transient quiescence in multipotent mesenchymal stem cells.


Author(s):  
Mani Arsalan ◽  
Stefan Dhein ◽  
Heike Aupperle ◽  
Ardawan Julian Rastan ◽  
Markus Jan Barten ◽  
...  

Objective The transplantation of mesenchymal stem cells (MSCs) represents a promising approach for treating the ischemic and the nonischemic diseased heart. The positive effects of transplanting these cells could be shown, but the exact mechanisms remain unknown. We evaluated whether the injection site affects the improvement in left ventricular (LV) ejection fraction (EF) and angiogenesis in doxorubicin (Dox)–induced failing hearts. Methods Heart failure was induced in New Zealand white rabbits by doxorubicin treatment, followed by right ventricular MSC transplantation (RV-MSC, n = 6), LV MSC transplantation (LV-MSC, n = 6), sham treatment (sham group, n = 6), or no therapy (Dox group, n = 5). Healthy rabbits were used as control group (n = 8). Cells were isolated after bone marrow aspiration and transplanted locally into the ventricular myocardium. After 4 weeks, cardiac function and capillary density (CD31 staining) were measured. Results The transplantation of MSCs increased the EF significantly (LV-MSC, 39.0% ± 1.4%, and RV-MSC, 39.2% ± 2.6%, vs sham group, 29.8% ± 3.7%; P < 0.001), without significance between the MSC groups ( P = 0.858). Neither the evidence of a transdifferentiation nor any signs of cell engraftment of transplanted cells could be found. The capillary density (capillaries/high-power field) increased in both MSC groups compared with the sham group (LV-MSC by 8.3% ± 3.4%; and RV-MSC, 8.1% ± 2.2%; P < 0.05), without significance between the two MSC groups ( P = 0.927). Conclusions Injection of autologous MSCs in doxorubicin-induced cardiomyopathic rabbit hearts improves EF and enhances angiogenesis. Despite local application, we observed global effects on heart function and capillary density without significant difference between right and LV injection. The paracrine mechanism might be one possible explanation for these findings.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zun Chang Liu ◽  
Thomas Ming Swi Chang

Mesenchymal stem cells (MSCs) derived from bone marrow can secrete cytokines and growth factors and can transdifferentiate into liver cells. We transplanted polymeric membrane bioencapsulated MSCs into the spleens of 90% partial hepatectomized rats. This resulted in 91.6% recovery rates. This is compared to a recovery rate of 21.4% in the 90% hepatectomized rats and 25% in the 90% hepatectomized rats receiving intrasplenic transplantation of free MSCs. After 14 days, the remnant livers in the bioencapsulated MSCs group are not significantly different in weight when compared to the sham control group. From day 1 to day 3 after surgery, in the bioencapsulated MSCs group, the plasma HGF and IL-6 were significantly higher than those in the free MSCs group and control group (P<0.01); plasma TNF-αwas significantly lower (P<0.001). We concluded that the intrasplenic transplantation of bioencapsulated MSCs significantly increases the recovery rates of 90% hepatectomized rats. It is likely that the initial effect is from proliver regeneration factors followed later by the transdifferentiated hepatocyte-like cells. However, histopathological analysis and hepatocyte proliferation study will be needed to better understand the regenerative mechanisms of this result. This study has implications in improving the survival and recovery of patients with very severe liver failure due to hepatitis, trauma, or extensive surgical resection.


Sign in / Sign up

Export Citation Format

Share Document