scholarly journals Characterisation of Olive Mill Effluents and Treatments Essays by Sand Filters Followed by Macrophytes Systems

2017 ◽  
pp. 257-266
Author(s):  
Laila Mandi ◽  
Mounia Achak ◽  
Naaila Ouazzani

Industrial oil olives have a fundamental economic importance for many countries around the Mediterranean Sea. However, during oil olive production, large amount of polluted waters known as olive mill wastewaters (OMW) are generated. Many studies have been undertaken to find efficient treatment systems and several techniques have been tested, but there have been few studies investigating sand filter or macrophytic plants for this type of effluent. The objective of this work is to study of the suitability of macrophytic plants to treat olive mill wastewater (OMW) after their passage through sand filter. The experimental pilot consists of a sand filter followed by a planted system. The sand filter is filled with 50 cm of sand and 10 cm of gravel in the top and the bottom of the filter. The alimentation (4 cm/j) is done sequentially following one day wet /three days dry cycle. In order to activate the degradation processes in the sand filter, OMW are diluted at 50% by domestic wastewater. The second step of the treatment consists of a tank (1x1x1 m3) filled with 20 cm of gravel and 60 cm of soil planted with a mixture of aquatic plants (Phragmites australis, Typha latifolia and Arundo donax) at a density of 25 young plants/m2 and irrigated two times in the week by 20L of preliminary filtered OMW. The obtained results show that the sand filter ensures a neutralization of the OMW pH which passes from 4.79 to 7.68. The enrichment of sand by the micro-organisms makes it possible to have an important mineralization of the organic matter. After ten weeks of operation of this system without clogging sign, the rate of abatement of the TSS, total COD, dissolved COD and phenolic compounds is about 70%, 79%, 76% and 81% respectively. The preliminary outputs by the planted system show a good adaptation of the tested plants to the preliminary treated OMW. The pilot allows an elimination of 94% of TSS, 99.7% of total COD, 99.5% of dissolved COD and 95% of phenolic compounds. With regard to OMW treatment efficiency, the results obtained agree with important role of macrophytes for maintaining the aquatic plants treatment capability particularly for wastewater with high organic matter.

2004 ◽  
Vol 48 (11-12) ◽  
pp. 161-167 ◽  
Author(s):  
A. Norström ◽  
K. Larsdotter ◽  
L. Gumaelius ◽  
J. la Cour Jansen ◽  
G. Dalhammar

A treatment plant using conventional biological treatment combined with hydroponics and microalgae is constructed in a greenhouse in the area of Stockholm, Sweden. The treatment plant is built for research purposes and presently treats 0.559 m3 of domestic wastewater from the surrounding area per day. The system uses anoxic pre-denitrification followed by aerobic tanks for nitrification and plant growth. A microalgal step further reduces phosphorus, and a final sand filter polishes the water. During a three week period in July 2002 the treatment capacity of this system was evaluated with respect to removal of organic matter, phosphorus and nitrogen. 90% COD removal was obtained early in the system. Nitrification and denitrification was well established with total nitrogen reduction of 72%. Phosphorus was removed by 47% in the process. However, higher phosphorus removal values are expected as the microalgal step will be further developed. The results show that acceptable treatment can be achieved using this kind of system. Further optimisation of the system will lead to clean water as well as valuable plants to be harvested from the nutrient rich wastewater.


2007 ◽  
Vol 55 (7) ◽  
pp. 109-117 ◽  
Author(s):  
R. Vilpas ◽  
E. Santala

When domestic wastewater was treated with different onsite applications of buried sand filters and sequencing batch reactors, good organic matter removal was common and effluent BOD7 concentrations from 5 to 20 mg/l were easily achievable. For total nitrogen, effluent concentrations were usually between 20 and 80 mg/l. Good phosphorus removal, even using special adsorption or precipitation materials, was difficult to achieve and large variations occurred. The median effluent concentration of total phosphorus in the most successful sand filter application was less than 0.1 mg/l and other sand filters and SBRs had the median concentrations varying from 1.7 to 6.7 mg/l. These results are based on one year in situ monitoring of 2 conventional buried sand filters, 6 sand filter applications with special phosphorus adsorbing media within the filter bed, 5 sand filters with separate tertiary phosphorus filtration and 11 small SBRs of three different types. The study was carried out in southern Finland during 2003–05. The whole project included monitoring of more than 60 plants of 20 different treatment types or methods, used in normal conditions to treat domestic wastewater. Evaluation of the different systems was made by comparing the measured effluent concentrations. In addition the effluent concentrations were compared to the discharge limits calculated according to the new Finnish regulation.


1997 ◽  
Vol 36 (12) ◽  
pp. 283-298 ◽  
Author(s):  
Hang Kim Woo ◽  
Wataru Nishijima ◽  
Aloysius U. Baes ◽  
Mitsumasa Okada

The objective of this study is to evaluate the adsorption capacity of BAC saturated with natural organic matter (NOM) for micropollutant removal which intermittently enter into water sources and to compare this to sand filtration that has no adsorbability but has biodegradability. The removal of intermittently applied micropollutants was examined with two BAC and sand filters. Two BAC filters which have been operated for 6 and 20 months and a sand filter being used for 6 months for the treatment of reservoir water were used in this experiment. EBCT of these BAC and sand filter were 15 minutes. Bromophenol (highly adsorbable but refractory) and phenol (adsorbable and biodegradable) were used instead of targeted micropollutants. Bromophenol and phenol of about 200 μg·l−1 were applied for 24 hours. The BAC 1, which was used for 20 months had already lost its adsorbability because it was saturated with NOM. BAC 2 filter which was used for 6 months had small adsorption capacity for NOM. As a result, either BAC 2 or BAC 1 removed bromophenol (160 μg·l−1) completely for 24 hours spike, but sand filter did not removed at all. Bromophenol can be removed only by adsorption, therefore bromophenol might be removed through adsorption by BAC. On the other hand, phenol (220 μg·l−1) whose adsorbability is lower than bromophenol, was removed completely by both BAC 1 and BAC 2. These results indicate that micropollutants with similar adsorbability as that of phenol and bromophenol can be removed by BAC even after a long period of operation and saturation with NOM.


1994 ◽  
Vol 30 (8) ◽  
pp. 235-244 ◽  
Author(s):  
M. Hosomi ◽  
A. Murakami ◽  
R. Sudo

In order to clarify the natural purification potential of a natural wetland having free-flowing water, we performed a four-year study on such a wetland system which had been receiving for 12 years the domestic wastewater discharged from a residential area comprised of 45 households. The wetland's removal rate of organic matter throughout the four years ranged from 80% for COD to 95% for BOD, whereas the corresponding nitrogen removal rate was comparatively lower. Results indicate that NH4-N release from the bottom sediment and repression of nitrification are the main factors responsible for the wetland's low removal rate of nitrogen during winter. The wetland purification performance even in winter was determined as follows (g m−2 d−1): 2.2 BOD, 0.81 COD, 1.1 TOC, 0.10 T-N, and 0.023 T-P.


2018 ◽  
Vol 40 ◽  
pp. 751-759 ◽  
Author(s):  
Lorenzo Cecchi ◽  
Maria Bellumori ◽  
Caterina Cipriani ◽  
Alessandra Mocali ◽  
Marzia Innocenti ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Aurélia Malapert ◽  
Valérie Tomao ◽  
Marielle Margier ◽  
Marion Nowicki ◽  
Béatrice Gleize ◽  
...  

Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.


1999 ◽  
Vol 40 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Trond Mæhlum ◽  
Per Stålnacke

This paper outlines the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs). Three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described. Particular attention is devoted to: (1) aerobic pre-treatment in vertical-flow filters, (2) filter media with high phosphorus (P) sorption capacity, and (3) the treatment efficiency during winters. Aerobic pre-treatment followed by CW units including P sorption media removed most organic matter (BOD&gt; 75%), P (&gt; 90%) and total and ammonia N (40-80%). P retention was relatively stable in wetland filters, both with lightweight aggregates and ferruginous sand during 3-6 years of monitoring. Iron-rich sand from Bsh and Bs horizons of ferro-humic podzols was efficient for P sorption, but removal efficiencies of COD, TOC and SS were negative. The differences in efficiency between cold and warm periods were less than 10 percentage points for all parameters. It is anticipated that temperature effects are partially compensated by the large hydraulic retention time. The findings suggest that HSF systems do not require vegetation.


2021 ◽  
Author(s):  
Vanitha Thammaiah ◽  
Manjunatha Hebbara ◽  
Manjunatha Mudukapla Virupakshappa

Abstract An experiment with different filterbeds and macrophytes was carried-out to study their phytoremediation capacity on the efficiency of domestic wastewater treatment through constructed wetland (CW) during November to March, 2017-18 at University of Agricultural Sciences, Dharwad campus, Karnataka, India. Twenty treatment combinations involving five types of filterbeds (FB-1: gravel, FB-2: gravel-sand-gravel, FB-3: gavel-sand-brick-gravel, FB-4: gravel-sand-charcoal-gravel and FB-5: gravel-sand-(charcoal+brick)-gravel) and four macrophytes (MP-1: Typha latifolia, MP-2: Brachiaria mutica, MP-3: Canna indica and MP-4: Phragmites sps.) were evaluated for treating domestic wastewater. After 120 days from start, across treatment combinations, water electrical conductivity (EC), total dissolved and suspended solids (TDS-TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), sodium, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), bicarbonates, total nitrogen-phosphorus-potassium (N-P-K) and boron (B) were reduced by more than 40 per cent due to wetland treatment. The system enhanced the mineralization of organic nitrogen to ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) fractions. Among filterbeds, Type-5 caused higher reduction in pH, EC, BOD, COD and Organic-N while, Type-4 proved efficient in removing total solids and lowering pH in the sewage effluent. The Type-3 filterbed removed more suspended solids, potassium and ammoniacal nitrogen. Among the macrophytes, Brachiaria (paragrass) removed more nitrogen and potassium while, Phragmites removed more nitrogen, phosphorus and boron. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main, secondary or tertiary treatment stage.


Sign in / Sign up

Export Citation Format

Share Document