scholarly journals Definition of Construction Parameters of Discrete Restraining Constructions

Author(s):  
V. H Shapoval ◽  
I. O Ponomarenko ◽  
H. P Ivanova ◽  
R. M Tereshchuk ◽  
D. O Shashenko

Purpose. There are many problems in the design of anti-landslide constructions, therefore discrete constructions are an alternative to solid anti-landslides. Despite the advantages of such constructions, difficulties also arise when using them. In this work, it is envisaged to develop methods for determining the zone of influence of discrete restraining constructions on the interaction of a sliding soil mass with them and a method for assessing the conditions of a stable state of the soil, which interacts with discrete restraining constructions, by constructing analytical dependencies necessary to determine the zone size and the soil stability coefficient. Methodology. Theoretical studies of geomechanical processes using analytical and numerical mathematical methods, as well as analysis and generalization of theoretical research results were used to achieve the purpose. Findings. The research results presented in the work allow, during the design of landslide discrete constructions, to determine the area of interaction of the shear with discrete retaining constructions, as well as to take into account the stability coefficient of the soil laid between the elements of the discrete retaining structure. Dependences were obtained for determining the zone size in which the sliding soil mass interacts, with discrete retaining constructions, and the soil stability coefficient in the zone of its interaction with these constructions. Originality. Analytical dependencies allow to calculate the boom of lifting the soil dumping arch between the elements of the discrete anti-landslide restraining construction and the coefficient of soil stability. Practical value. The research results allow, when designing discrete restraining constructions, to determine the area of interaction of the shear with these constructions and the stability coefficient of the soil laid between the elements of the discrete restraining construction.

2013 ◽  
Vol 353-356 ◽  
pp. 50-54
Author(s):  
Wei Hui Huang ◽  
Ke Gang Li ◽  
Jiang Bo Liang

This paper analyses the stability of a highway slope in Yunnan by using the FLAC3D numerical software. To simulate the stability coefficient only considering the gravity loads and also taking into account the action of groundwater and then in comparison with the result calculated by the limit equilibrium method consider the influence of groundwater , the results show that the slope in a state of instability with the effect of groundwater. Then use anchorage to upgrade the slope, and the slope in a stable state after reinforcement. The simulation results have certain reference significance to the slope management.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2013 ◽  
Vol 859 ◽  
pp. 222-227
Author(s):  
Hong Jun Liu ◽  
Jin Hua Tan ◽  
Xue Wen Su ◽  
Hao Wu

Two typical monitoring sections are selected for obtaining the change law of the surface subsidence and the settlement after construction of soft soil foundations, and determining the reasonable unloading time. The research results show that the surface settlement rate is large during the filling stage, the rate decreases after the loading and gradually stabilized. The embankment midline settlement is larger than the settlement of the road shoulder which is concluded from the fact that the subsidence of the middle settlement plate is larger than those of the left and right plate. The surface subsidence rate is less than 5mm per month during the two month before unloading according to the data in the tables. The settlement after construction presumed from the middle plate is more significantly larger than that of left and right sides, hence, as the unloading basis of preloading drainage method in soft soil foundation treatment the settlement after construction which is calculated from the midline monitoring data of the road is appropriate. After 6 months the calculated post-construction settlements of the two sections are in the scope of the design requirement since they decrease with preloading time. The reliable basis is provided for the future design and construction of soft foundation in this area through the research results.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


2021 ◽  
Vol 930 (1) ◽  
pp. 012025
Author(s):  
P D Pietro ◽  
M Lelli ◽  
A Rahman ◽  
Serkandi

Abstract The efficacy of erosion control systems depends on preventing soil loss underneath and maintaining its integrity under the effects of the water flow. The paper presents the research results at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control systems. Mattresses were subjected to various flow conditions on a 10 m long flume placed on a soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties, and under variable hydraulic flow regimes. At the same time, confirming the stability obtained using the conventional tractive force design approach, the research results allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control systems as a function of the filling stones’ size, uniformity, unit weight, mattress thickness, and the presence of vertical strengthening elements.


2013 ◽  
Vol 40 (2) ◽  
pp. 293-383 ◽  
Author(s):  
Katica Hedrih-Stevanovic

A review, in subjective choice, of author?s scientific results in area of: classical mechanics, analytical mechanics of discrete hereditary systems, analytical mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear dynamics and hybrid system dynamics is presented. Main original author?s results were presented through the mathematical methods of mechanics with examples of applications for solving problems of mechanical real system dynamics abstracted to the theoretical models of mechanical discrete or continuum systems, as well as hybrid systems. Paper, also, presents serries of methods and scientific results authored by professors Mitropolyski, Andjelic and Raskovic, as well as author?s of this paper original scientific research results obtained by methods of her professors. Vector method based on mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented. Results in construction of analytical dynamics of hereditary discrete system obtained in collaboration with O. A. Gorosho are presented. Also, some selections of results author?s postgraduate students and doctorantes in area of nonlinear dynamics are presented. A list of scientific projects headed by author of this paper is presented with a list of doctoral dissertation and magister of sciences thesis which contain scientific research results obtained under the supervision by author of this paper or their fist doctoral candidates.


2011 ◽  
Vol 48 (12) ◽  
pp. 1841-1854 ◽  
Author(s):  
Kentaro Yamamoto ◽  
Andrei V. Lyamin ◽  
Daniel W. Wilson ◽  
Scott W. Sloan ◽  
Andrew J. Abbo

This paper focuses mainly on the stability of a square tunnel in cohesive–frictional soils subjected to surcharge loading. Large-size noncircular tunnels are quickly becoming a widespread building technology by virtue of the development of advanced tunneling machines. The stability of square tunnels in cohesive–frictional soils subjected to surcharge loading has been investigated theoretically and numerically, assuming plane strain conditions. Despite the importance of this problem, previous research on the subject is very limited. At present, no generally accepted design or analysis method is available to evaluate the stability of tunnels or openings in cohesive–frictional soils. In this study, a continuous loading is applied to the ground surface, and both smooth and rough interface conditions between the loading and soil are modelled. For a series of tunnel geometries and material properties, rigorous lower and upper bound solutions for the ultimate surcharge loading of the considered soil mass are obtained by applying recently developed numerical limit analysis techniques. The results obtained are presented in the form of dimensionless stability charts for practical convenience, with the actual surcharge loads being closely bracketed from above and below. As a handy practical means, upper bound rigid-block mechanisms for square tunnels have also been developed, and the obtained values of collapse loads were compared with the results from numerical limit analysis to verify the accuracy of both approaches. Finally, an expression that approximates the ultimate surcharge load of cohesive–frictional soils with the inclusion of shallow square tunnels has been devised for use by practicing engineers.


2020 ◽  
Vol 36 (4) ◽  
pp. 1864-1885
Author(s):  
John Lawson ◽  
Maria Koliou

When evaluating seismically induced second-order effects in buildings, engineers and researchers are most familiar with these concerns in the context of multistory buildings with rigid diaphragms. However, similar concerns are valid for short single-story concrete or masonry-walled buildings with larger flexible diaphragms, which is a significant portion of the building stock in the United States. These rigid wall-flexible diaphragm (RWFD) buildings may have significant diaphragm drifts causing induced second-order effects. The stability coefficient currently found in ASCE 7 has traditionally been used by practitioners to evaluate the relative risk of P-delta instability in multistory buildings, but this indicator can be adapted for use in RWFD buildings. Using numerical studies following the Federal Emergency Management Agency (FEMA) P-695 collapse assessment methodology to evaluate the risk of collapse for a set of RWFD archetype buildings, a modified stability coefficient for RWFD buildings is found to capture the trend toward P-delta collapse and can act as a reasonable indicator without the need for heavy computational efforts.


Author(s):  
Tianya Wang ◽  
Yihong Wang ◽  
Guiyuan Zeng ◽  
Jianxiong Zhang ◽  
Dan Shi

To investigate the effects of the height-thickness ratio (β) on the mechanical properties and stability coefficients (φs) of interlocking compressed earth block (ICEB) masonry members under axial compression, four groups of specimens with different β of 3.75, 6.75, 11.25, and 14.25 were tested, thereby assessing their stress process, failure mode, compressive strength, and in- and out-of-plane deformations. All the specimens underwent brittle failure under axial compression: the compressive strength was found to decrease in a range from 5.6% to 43% with increasing β, whereas the initial stacking defects and the in- and out-of-plane deformations increased. The specimens became less stable, and we noticed that the overall damage was caused by strength failure and not instability failures. Because the stability coefficient of ICEB-based masonry components cannot be calculated as those of more conventional brickwork, we combined our results with well-established masonry design guidelines and derived an interlocking improvement coefficient.


Sign in / Sign up

Export Citation Format

Share Document