scholarly journals Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy

2020 ◽  
Vol 80 (3) ◽  
pp. 497-505
Author(s):  
R. D. R. Tiveron ◽  
D. A. Costa ◽  
M. D. I. Leite ◽  
C. B. S. Vaz ◽  
M. Sousa ◽  
...  

Abstract Little is known regarding whether photodynamic therapy (PDT)-induced cell death can substantially compromise macrophages (MΦ), which are important cells in PDT-induced immune responses. Here, parameters of PDT-mediated MΦ cytotoxicity and cytokine production in response to protoporphyrin IX (PpIX) were evaluated. Peritoneal MΦ from BALB/c mice were stimulated in vitro with PDT, light, PpIX, or lipopolysaccharide (LPS). After that, cell viability, lipid peroxidation, Nitric Oxide (NO), DNA damage, TNF-α, IL-6 and IL-10 were evaluated. Short PDT exposure reduced cell viability by 10–30%. There was a two-fold increase in NO and DNA degradation, despite the non-increase in lipoperoxidation. PDT increased TNF-α and IL-10, particularly in the presence of LPS, and decreased the production of IL-6 to 10-fold. PDT causes cellular stress, induces NO radicals and leads to DNA degradation, generating a cytotoxic microenvironment. Furthermore, PDT modulates pro- and anti-inflammatory cytokines in MΦ.

2005 ◽  
Vol 288 (2) ◽  
pp. L317-L325 ◽  
Author(s):  
Branislava Janic ◽  
Todd M. Umstead ◽  
David S. Phelps ◽  
Joanna Floros

Ozone (O3), a major component of air pollution and a strong oxidizing agent, can lead to lung injury associated with edema, inflammation, and epithelial cell damage. The effects of O3on pulmonary immune cells have been studied in various in vivo and in vitro systems. We have shown previously that O3exposure of surfactant protein (SP)-A decreases its ability to modulate proinflammatory cytokine production by cells of monocyte/macrophage lineage (THP-1 cells). In this report, we exposed THP-1 cells and/or native SP-A obtained from bronchoalveolar lavage of patients with alveolar proteinosis to O3and studied cytokine production and NF-κB signaling. The results showed 1) exposure of THP-1 cells to O3significantly decreased their ability to express TNF-α in response to SP-A; TNF-α production, under these conditions, was still significantly higher than basal (unstimulated) levels in filtered air-exposed THP-1 cells; 2) exposure of both THP-1 cells and SP-A to O3did not result in any significant differences in TNF-α expression compared with basal levels; 3) O3exposure of SP-A resulted in a decreased ability of SP-A to activate the NF-κB pathway, as assessed by the lack of significant increase and decrease of the nuclear p65 subunit of NF-κB and cytoplasmic IκBα, respectively; and 4) O3exposure of THP-1 cells resulted in a decrease in SP-A-mediated THP-1 cell responsiveness, which did not seem to be mediated via the classic NF-κB pathway. These findings indicate that O3exposure may mediate its effect on macrophage function both directly and indirectly (via SP-A oxidation) and by involving different mechanisms.


2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2020 ◽  
Author(s):  
Zhesheng He ◽  
Chunyu Zhang ◽  
Zhongying Du ◽  
Wencong Zhao ◽  
Wenchao Niu ◽  
...  

Our studies implied the golden compounds may be more effective against COVID 19 as they synergy inhibit SARS COV 2 replication and down regulation inflammation cytokine level. Our crystal structure studies firstly revealed Au (I) ions, derived from auranofin (AF) or gold cluster (GA), covalently bind sulfur atom of Cys145 and Cys156 of Mpro of SARS COV 2. The auranofin or gold cluster well inhibit Mpro activity in vitro. Auranofin or gold cluster could well suppress inflammation cytokine level of IL 6, IL 1β, TNF α via down regulation NF κB activation in macrophage. The cell viability and rat toxicity studies show gold cluster is more safety when compared FDA approved auranofin. The rat pharmacokinetic studies of gold cluster revealed its good bioavailability.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Reza Shirazinia ◽  
Ali Akbar Golabchifar ◽  
Vafa Baradaran Rahimi ◽  
Abbas Jamshidian ◽  
Alireza Samzadeh-Kermani ◽  
...  

Lead is one of the most common environmental contaminants in the Earth’s crust, which induces a wide range of humans biochemical changes. Previous studies showed that Opuntia dillenii (OD) fruit possesses several antioxidant and anti-inflammatory properties. The present study evaluates OD fruit hydroalcoholic extract (OHAE) hepatoprotective effects against lead acetate- (Pb-) induced toxicity in both animal and cellular models. Male rats were grouped as follows: control, Pb (25 mg/kg/d i.p.), and groups 3 and 4 received OHAE at 100 and 200 mg/kg/d + Pb (25 mg/kg/d i.p.), for ten days of the experiment. Thereafter, we evaluated the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), catalase (CAT) activity and malondialdehyde (MDA) in serum, and liver histopathology. Additionally, the cell study was also done using the HepG2 cell line for measuring the direct effects of the extract on cell viability, oxidative stress MDA, and glutathione (GSH) and inflammation tumor necrosis factor-α (TNF-α) following the Pb-induced cytotoxicity. Pb significantly increased the serum levels of ALT, AST, ALP, and MDA and liver histopathological scores but notably decreased CAT activity compared to the control group ( p < 0.001 for all cases). OHAE (100 and 200 mg/kg) significantly reduced the levels of serum liver enzyme activities and MDA as well as histopathological scores while it significantly increased CAT activity compared to the Pb group ( p < 0.001 –0.05 for all cases). OHAE (20, 40, and 80 μg/ml) concentration dependently and significantly reduced the levels of MDA and TNF-α, while it increased the levels of GSH and cell viability in comparison to the Pb group ( p < 0.001 –0.05 for all cases). These data suggest that OHAE may have hepatoprotective effects against Pb-induced liver toxicity both in vitro and in vivo by its antioxidant and anti-inflammatory activities.


2015 ◽  
Vol 43 (01) ◽  
pp. 183-198 ◽  
Author(s):  
Wenjuan Yao ◽  
Chengjing Gu ◽  
Haoran Shao ◽  
Guoliang Meng ◽  
Huiming Wang ◽  
...  

Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K–Akt–mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.


Author(s):  
Christina J. Megli ◽  
Alisse Hauspurg ◽  
Raman Venkataramanan ◽  
Steve N. Caritis

Objective The rate of recurrent spontaneous preterm birth (PTB) was reduced by 33% in the Maternal-Fetal Medicine Unit (MFMU) Network trial of 17α-hydroxyprogesterone caproate (17-OHPC), but the mechanism of action, 17 years later, remains elusive. The robustness of the interleukin-10 (IL-10) response to lipopolysaccharide (LPS) stimulation of leukocytes in pregnant women with a prior PTB correlates with gestational age at delivery. This study sought to determine if there is a relationship between the concentration of 17-OHPC and response to LPS stimulation. Study Design We performed a secondary analysis of data from the Omega-3 MFMU trial which evaluated the effectiveness of omega-3 fatty acid supplementation in reducing recurrent PTB. We utilized previously characterized data from a subanalyses of the Omega-3 trial of IL-10 and tumor necrosis factor alpha (TNF-α) levels from peripheral blood mononuclear cells stimulated with LPS. Blood was obtained from enrolled women at 16 to 22 weeks' gestation (baseline) and 25 to 28 weeks' gestation (posttreatment). All women received 17-OHPC and plasma 17-OHPC concentrations were measured at 25 to 28 weeks' gestation. We analyzed these data to determine if there was a relationship between 17-OHPC concentration and cytokine production. We then performed an in vitro study to determine if 17-OHPC could directly alter cytokine production by THP-1-derived macrophages. Results In the clinical samples, we found that 17-OHPC plasma concentrations were correlated with the quantity of the LPS-stimulated production of IL-10. TNF-α production after LPS stimulation was unrelated to 17-OHPC concentration. In the in vitro study, we demonstrate a 17-OHPC concentration dependent increase in IL-10 production. Conclusion In women receiving 17-OHPC for PTB prevention, we demonstrate a relationship between plasma 17-OHPC and LPS-stimulated IL-10 production by circulating leukocytes. We also demonstrate that, in vitro, 17-OHPC treatment affects IL-10 production by LPS-stimulated macrophages. Collectively, these findings support an immunomodulatory mechanism of action of 17-OHPC in the prevention of recurrent PTB. Key Points


2D Materials ◽  
2021 ◽  
Author(s):  
Giacomo Reina ◽  
Amalia Ruiz ◽  
Barbara Richichi ◽  
Giacomo Biagiotti ◽  
Gina Elena Giacomoazzo ◽  
...  

Abstract Boron dipyrromethene derivates (BODIPYs) are promising photosensitisers (PSs) for cancer treatment using photodynamic therapy (PDT). This study investigates the functionalisation of graphene oxide (GO) with a BODIPY derivate for glutathione (GSH) depletion and PDT. The functionalisation of GO with a 3,5-dichloro-8-(4-boronophenyl) BODIPY via a diol derivatisation with the phenyl boronic acid moiety at the meso position of the BODIPY core, allowed to preserve the intrinsic properties of GO. We demonstrated that both chlorine atoms were substituted by GSH in the presence of glutathione transferase (GST), inducing a relevant bathochromic shift in the absorption/emission features and thus generating the active PS. Ex vitro assessment using cell lysates containing cytoplasmatic GST revealed the intracellular catalytic mechanism for the nucleophilic substitution of the GO-BODIPY adduct with GSH. Confocal microscopy studies showed important differences in the cellular uptake of free BODIPY and GO-BODIPY and revealed the coexistence of GO-BODIPY, GO-BODIPY-GS, and GO-BODIPY-GS2 species inside vesicles and in the cytoplasm of the cells after 24 h of incubation. In vitro biocompatibility and safety of GO and GO-BODIPY were evaluated in 2D and 3D models of prostate adenocarcinoma cells (PC-3), where no toxicity was observed up to 100 µg/mL of GO/GO-BODIPY in all treated groups 24 h post-treatment (cell viability > 90%). Only a slight decrease to 80% at 100 µg/mL was observed after 48 h of incubation. We demonstrated the efficacy of a GO adduct containing an α-chlorine-substituted BODIPY for the simultaneous depletion of intracellular GSH and the photogeneration of reactive oxygen species using a halogen white light source (5.4 mW/cm2) with a maximum in the range of 500-800 nm, which significantly reduced cell viability (< 50%) after irradiation. Our study provides a new vision on how to apply BODIPY derivates and potentiate the toxicity of PDT in prostate and other types of cancer.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 108
Author(s):  
Tonathiu Rodriguez ◽  
Thalia Pacheco-Fernández ◽  
Alicia Vázquez-Mendoza ◽  
Oscar Nieto-Yañez ◽  
Imelda Juárez-Avelar ◽  
...  

Macrophage galactose-C type lectin (MGL)1 receptor is involved in the recognition of Trypanosoma cruzi (T. cruzi) parasites and is important for the modulation of the innate and adaptive immune responses. However, the mechanism by which MGL1 promotes resistance to T. cruzi remains unclear. Here, we show that MGL1 knockout macrophages (MGL1−/− Mφ) infected in vitro with T. cruzi were heavily parasitized and showed decreased levels of reactive oxygen species (ROS), nitric oxide (NO), IL-12 and TNF-α compared to wild-type macrophages (WT Mφ). MGL1−/− Mφ stimulated in vitro with T. cruzi antigen (TcAg) showed low expression of TLR-2, TLR-4 and MHC-II, which resulted in deficient splenic cell activation compared with similar co-cultured WT Mφ. Importantly, the activation of p-ERK1/2, p-c-Jun and p-NF-κB p65 were significantly reduced in MGL1−/− Mφ exposed to TcAg. Similarly, procaspase 1, caspase 1 and NLRP3 inflammasome also displayed a reduced expression that was associated with low IL-β production. Our data reveal a previously unappreciated role for MGL1 in Mφ activation through the modulation of ERK1/2, c-Jun, NF-κB and NLRP3 signaling pathways, and to the development of protective innate immunity against experimental T. cruzi infection.


Vascular ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 314-320
Author(s):  
Weiping Ci ◽  
Tian Wang ◽  
Taotao Li ◽  
Jin Wan

Objectives The effect and underlying mechanism of T-614 (iguratimod) on Takayasu’s arteritis (TA) are unknown. Here, we report the effects of T-614 on cell proliferation and interleukin-8 (IL-8) production in human aortic adventitial fibroblasts (HAAFs) in vitro and explore its initial benefit in terms of vascular wall inflammation and remodeling for patients with TA. Methods HAAFs were cultured with 0, 5, 50, 100, or 250 μg/ml T-614 in the absence or presence of tumor necrosis factor-α (TNF-α) in vitro. Cell viability was determined by a modified MTT assay. Supernatant IL-8 levels were measured by enzyme-linked immunosorbent assays. Results In the presence of TNF-α, compared to that in the control group, cell viability of HAAFs significantly decreased in the 50, 100, and 250 μg/ml T-614 treatment groups (OD value: P <  0.01, P <  0.001, P <  0.001, respectively; survival fraction (SF): P <  0.05, P <  0.001, P <  0.001, respectively). However, there was no significant difference in cell viability between TNF-α-stimulated and unstimulated groups at the same concentration of T-614. In the absence or presence of TNF-α, T-614 suppressed HAAF cell viability dose-dependently (OD value: r = −0.915, P =  0.000; r = −0.926, P =  0.000, respectively; SF: r = −0.897, P =  0.000; r = −0.885, P =  0.000, respectively). Compared to that in the control group, in the absence of TNF-α, IL-8 levels in the 5 and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.05); in the presence of TNF-α, IL-8 levels in the 5, 50, and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.001, P <  0.001, P <  0.01, respectively). Further, there was a negative correlation between supernatant IL-8 levels and T-614 concentration in groups stimulated with TNF-α ( r = −0.670, P =  0.000), but there was no significant correlation between these parameters in groups that were not stimulated with TNF-α. Conclusions In the absence or presence of TNF-α, T-614 can inhibit HAAF proliferation and promote IL-8 production in vitro; therefore, it could be used to prevent adventitial thickening of the aorta and improve vascular remodeling in inflammatory environments in vitro and might provide a new immunotherapeutic intervention for TA.


Sign in / Sign up

Export Citation Format

Share Document