scholarly journals Genetic diversity and structure of Astrocaryum jauari (Mart.) palm in two Amazon river basins

2014 ◽  
Vol 14 (3) ◽  
pp. 166-173 ◽  
Author(s):  
Liliane D. Santos Oliveira ◽  
Santiago L. Ferreyra Ramos ◽  
Maria T. Gomes Lopes ◽  
Gabriel Dequigiovanni ◽  
Elizabeth Ann Veasey ◽  
...  

Astrocaryum jauari is a non-domesticated palm that is exploited by poachers. Our objective was to investigate the organization of the geneticdiversity and structure of three A. jauari populations. The study was carried out in the state of Amazonas, between the municipalities of Coari and Manaus. Nine microsatellite loci were used for the genetic analyses. High genetic variation was found, with a mean number of alleles per locus varying from 3.9 to 4.4. The average observed heterozygosity, varying from 0.71 to 0.78, was higher than expected. No spatial genetic structure was detected, since only one cluster was observed. Our results indicate a possible dispersion strategy and suggest that conservation measures of this species should focus mainly on the populations found at the end of the main river (Solimões) where most of the plant material originating from the headwaters of the tributaries of this river is concentrated.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10327
Author(s):  
Ricardo M. Landínez-García ◽  
Juan Carlos Narváez ◽  
Edna J. Márquez

Prochilodus magdalenae is a freshwater fish endemic to the Colombian Magdalena-Cauca and Caribbean hydrographic basins. The genetic structure patterns of populations of different members of Prochilodus and the historic restocking of its depleted natural populations suggest that P. magdalenae exhibits genetic stocks that coexist and co-migrate throughout the rivers Magdalena, Cauca, Cesar, Sinú and Atrato. To test this hypothesis and explore the levels of genetic diversity and population demography of 725 samples of P. magdalenae from the studied rivers, we developed a set of 11 species-specific microsatellite loci using next-generation sequencing, bioinformatics, and experimental tests of the levels of diversity of the microsatellite loci. The results evidenced that P. magdalenae exhibits high genetic diversity, significant inbreeding coefficient ranging from 0.162 to 0.202, and signs of erosion of the genetic pool. Additionally, the population genetic structure constitutes a mixture of genetic stocks heterogeneously distributed along the studied rivers, and moreover, a highly divergent genetic stock was detected in Chucurí, Puerto Berrío and Palagua that may result from restocking practices. This study provides molecular tools and a wide framework regarding the genetic diversity and structure of P. magdalenae, which is crucial to complement its baseline information, diagnosis and monitoring of populations, and to support the implementation of adequate regulation, management, and conservation policies.


Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Alana N. Walker ◽  
Stephanie A. Foré ◽  
Beverly Collins

In long-lived ant-dispersed perennial herbs of mesic forests, interactions among fruiting plants, seed dispersal, and plant mortality over life-history stages can create demographic and genetic structure. We investigated whether there was nonrandom variation in the distributions of individuals and in genetic diversity within and among life-history stages of the forest herb Trillium maculatum Raf. (Liliaceae). In 2002 and 2004, all T. maculatum plants in a 5 m × 5 m plot (1572 and 1379 individuals, respectively) were mapped and classified as seedling, one-leaf, three-leaf nonflowering, or flowering. Spatial distributions of plants within and across life-history stages were tested against random expectation. Allozyme analysis of 262 individuals from three life-history stages was used to assess genetic diversity and structure in 2004. The number of seedlings and the proportion of one-leaf plants differed between years, but the proportions of three-leaf nonflowering and flowering plants remained the same. There was little evidence of vegetative reproduction, but heterozygosity was low and there was evidence of inbreeding. Seedlings were clumped around flowering plants at distances up to 50 cm and one-leaf plants were clumped at distances up to 100 cm. There were no apparent genetic differences among life-history stages, nor any apparent spatial genetic structure among all sampled individuals. These results, like those of other demographic and allozyme studies of Trillium species, can be explained by restricted dispersal and random mortality.


AoB Plants ◽  
2020 ◽  
Author(s):  
Rong Huang ◽  
Zong-Dian Zhang ◽  
Yu Wang ◽  
Ying-Qiang Wang

Abstract Habitat fragmentation strongly affects the genetic diversity of plant populations, and this has always attracted much research interest. Although numerous studies have investigated the effects of habitat fragmentation on the genetic diversity of plant populations, fewer studies have compared species with contrasting breeding systems while accounting for phylogenetic distance. Here, we compare the levels of genetic diversity and differentiation within and among subpopulations in metapopulations (at fine-scale level) of two closely related Zingiber species, selfing Zingiber corallinum and outcrossing Zingiber nudicarpum. Comparisons of the genetic structure of species from unrelated taxa may be confounded by the effects of correlated ecological traits or/and phylogeny. Thus, we possibly reveal the differences in genetic diversity and spatial distribution of genetic variation within metapopulations that relate to mating systems. Compared to outcrossing Z. nudicarpum, the subpopulation genetic diversity in selfing Z. corallinum was significantly lower, but the metapopulation genetic diversity was not different. Most genetic variation resided among subpopulations in selfing Z. corallinum metapopulations, while a significant portion of variation resided either within or among subpopulations in outcrossing Z. nudicarpum, depending on whether the degree of subpopulation isolation surpass the dispersal ability of pollen and seed. A stronger spatial genetic structure appeared within subpopulations of selfing Z. corallinum potentially due to restricted pollen flow and seed dispersal. In contrast, a weaker genetic structure was apparent in subpopulations of outcrossing Z. nudicarpum most likely caused by extensive pollen movement. Our study shows that high genetic variation can be maintained within metapopulations of selfing Zingiber species, due to increased genetic differentiation intensified primarily by the stochastic force of genetic drift among subpopulations. Therefore, maintenance of natural variability among subpopulations in fragmented areas is key to conserve the full range of genetic diversity of selfing Zingiber species. For outcrossing Zingiber species, maintenance of large populations is an important factor to enhance genetic diversity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiong Fu ◽  
Jie Deng ◽  
Min Chen ◽  
Yan Zhong ◽  
Guo-Hui Lu ◽  
...  

Abstract Background Rivers and streams facilitate movement of individuals and their genes across the landscape and are generally recognized as dispersal corridors for riparian plants. Nevertheless, some authors have reported directly contrasting results, which may be attributed to a complex mixture of factors, such as the mating system and dispersal mechanisms of propagules (seed and pollen), that make it difficult to predict the genetic diversity and population structure of riparian species. Here, we investigated a riparian self-fertilizing herb Caulokaempferia coenobialis, which does not use anemochory or zoochory for seed dispersal; such studies could contribute to an improved understanding of the effect of rivers or streams on population genetic diversity and structure in riparian plants. Using polymorphic ISSR and cpDNA loci, we studied the effect at a microgeographic scale of different stream systems (a linear stream, a dendritic stream, and complex transverse hydrological system) in subtropical monsoon forest on the genetic structure and connectivity of C. coenobialis populations across Dinghu Mountain (DH) and Nankun Mountain (NK). Results The results indicate that the most recent haplotypes (DH: H7, H8; NK: h6, h7, h11, h12) are not shared among local populations of C. coenobialis within each stream system. Furthermore, downstream local populations do not accumulate genetic diversity, whether in the linear streamside local populations across DH (H: 0.091 vs 0.136) or the dendritic streamside local populations across NK (H: 0.079 vs 0.112, 0.110). Our results show that the connectivity of local C. coenobialis populations across DH and NK can be attributed to historical gene flows, resulting in a lack of spatial genetic structure, despite self-fertilization. Selfing C. coenobialis can maintain high genetic diversity (H = 0.251; I = 0.382) through genetic differentiation (GST = 0.5915; FST = 0.663), which is intensified by local adaptation and neutral mutation and/or genetic drift in local populations at a microgeographic scale. Conclusion We suggest that streams are not acting as corridors for dispersal of C. coenobialis, and conservation strategies for maintaining genetic diversity of selfing species should be focused on the protection of all habitat types, especially isolated fragments in ecosystem processes.


2015 ◽  
Vol 37 (4) ◽  
pp. 984-992
Author(s):  
ELISA FERREIRA MOURA ◽  
MARIA DO SOCORRO PADILHA DE OLIVEIRA ◽  
DIEHGO TULOZA DA SILVA ◽  
LÍGIA CRISTINE GONÇALVES PONTES

ABSTRACT The aim of this study was to evaluate the genetic diversity and structure in the germoplasm of Oenocarpus mapora conserved at Eastern Amazon. Thus, 88 individuals were genotyped with five microsatellite loci. These individuals belong to 24 accessions that were sampled in eight sample places of three Brazilian Amazon states conserved at the Active Germplasm Bank (AGB) of Embrapa Eastern Amazon. All loci were polymorphic and they generated 85 alleles with an average of 17 alleles per loci. Total genetic diversity (HE) was 0.48. Sample places were considered genetically distinct, with ?p = 0.354. The analysis of molecular variance (AMOVA) identified that the genetic portion among areas was of 36.14% and within 63.86%. The Nei distances varied from 0.091 between Abaetetuba and Santo Antônio do Tauá, both in the state of Pará (PA), to 4.18, between Parintins, AM and Rio Branco, AC. By means of Bayesian analysis, it was identified nine clusters that compose the accessions of the germplasm bank, with different distributions among individuals. The study showed high fixation rates per sample area, which indicates that there may have been significant inbreeding or crossing among parental individuals. It suggests that future samples should be made of different plants in natural populations. Even though, it was verified that there is considerable genetic variation in the germplasm of O. mapora.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Babu Valliyodan ◽  
Anne V. Brown ◽  
Juexin Wang ◽  
Gunvant Patil ◽  
Yang Liu ◽  
...  

AbstractWe report characteristics of soybean genetic diversity and structure from the resequencing of 481 diverse soybean accessions, comprising 52 wild (Glycine soja) selections and 429 cultivated (Glycine max) varieties (landraces and elites). This data was used to identify 7.8 million SNPs, to predict SNP effects relative to genic regions, and to identify the genetic structure, relationships, and linkage disequilibrium. We found evidence of distinct, mostly independent selection of lineages by particular geographic location. Among cultivated varieties, we identified numerous highly conserved regions, suggesting selection during domestication. Comparisons of these accessions against the whole U.S. germplasm genotyped with the SoySNP50K iSelect BeadChip revealed that over 95% of the re-sequenced accessions have a high similarity to their SoySNP50K counterparts. Probable errors in seed source or genotype tracking were also identified in approximately 5% of the accessions.


2021 ◽  
Vol 49 (3) ◽  
pp. 12407
Author(s):  
Ting WANG ◽  
Zhen WANG ◽  
Shufeng LI ◽  
Zhanming YING ◽  
Xiaoxian RUAN ◽  
...  

Spatial genetic variation involves spatial genetic structure (SGS) and genetic diversity is important genetic features of plants. We first evaluated spatial genetic structure (SGS) and genetic diversity among four populations of Alsophila gigantea from Hainan Island, China, using inter-simple sequence repeat (ISSR) markers. Significant but weak FSGS was found in A. gigantea. High genetic diversity was identified at the species level and the population level. AMOVA analysis revealed a low level of genetic differentiation among the four populations with high gene flow. Mantel test showed no significant correlation between genetic distance and geographic distance. It was found that association between annual mean temperature and annual precipitation with FSGS. Combined with these spatial genetic variation, abundant precipitation and suitable temperature create a stable environment for A. gigantea in Hainan Island, which allows the fern to expand rapidly during the LGM. These results further emphasized the role of outcrossing, and history and environmental factors in the evolution of A. gigantea. This study also provided new insights on in local adaptation of A. gigantea to environmental fluctuations, and available genetic data to enhance the conservation for relict tree ferns.


2017 ◽  
Vol 60 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Bayrem Jemmali ◽  
Mohamed Mezir Haddad ◽  
Nawel Barhoumi ◽  
Syrine Tounsi ◽  
Faten Lasfer ◽  
...  

Abstract. This study aimed at screening genetic diversity and differentiation in four horse breeds raised in Tunisia, the Barb, Arab-Barb, Arabian, and English Thoroughbred breeds. A total of 200 blood samples (50 for each breed) were collected from the jugular veins of animals, and genomic DNA was extracted. The analysis of the genetic structure was carried out using a panel of 16 microsatellite loci. Results showed that all studied microsatellite markers were highly polymorphic in all breeds. Overall, a total of 147 alleles were detected using the 16 microsatellite loci. The average number of alleles per locus was 7.52 (0.49), 7.35 (0.54), 6.3 (0.44), and 6 (0.38) for the Arab-Barb, Barb, Arabian, and English Thoroughbred breeds, respectively. The observed heterozygosities ranged from 0.63 (0.03) in the English Thoroughbred to 0.72 in the Arab-Barb breeds, whereas the expected heterozygosities were between 0.68 (0.02) in the English Thoroughbred and 0.73 in the Barb breeds. All FST values calculated by pairwise breed combinations were significantly different from zero (p  <  0.05) and an important genetic differentiation among breeds was revealed. Genetic distances, the factorial correspondence, and principal coordinate analyses showed that the important amount of genetic variation was within population. These results may facilitate conservation programs for the studied breeds and enhance preserve their genetic diversity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


Sign in / Sign up

Export Citation Format

Share Document