scholarly journals Analyses of OJIP transients in leaves of two epiphytic orchids under drought stress

2021 ◽  
Vol 27 (4) ◽  
pp. 556-565
Author(s):  
Jadson Bonini Zampirollo ◽  
Clodoaldo Leites Pinheiro ◽  
Vinícius Fonseca dos Santos ◽  
Priscila Conceição Souza Braga ◽  
João Paulo Rodrigues Martins ◽  
...  

Abstract The tolerance to low water availability is a decisive factor for growth and survival of orchids in their natural environment. The objective of this study was to characterize the photochemical traits of two epiphytic orchids (Cattleya warneri and Miltonia spectabilis) under water deficit (WD). Chlorophyll a fluorescence signals were recorded from young and fully expanded leaves of 5 plants/species after dark-adaption for 60 minutes, between 6-9 a.m. after 0, 30, 60, and 90 days of WD, using a Handy-PEA fluorometer (Hansatech, UK). Increases of O-J and J-I phases and L and K-bands and decreases of I-P phase were observed after 30 days of WD, especially in C. warneri. Decreases in the capacity to photochemically reduce quinone A (QA) and the kinetic properties required for redox reactions of the plastoquinone pool, the loss of energetic connectivity between units of PSII, inactivation of the oxygen evolution complex, and decrease of the overall rate of reducing the electron acceptor pool of photosystem I were observed in M. spectabilis, a more tolerant species. The greater ability of this species to maintain higher relative water content (RWC) in photosynthetic tissues allows greater photochemical activity.

Author(s):  
Agustina Asri Rahmianna ◽  
Dan Joko Purnomo

Drought stress during generative stage affected pod yield, yield components, seed and pod qualities of groundnut (Arachis hypogaea L.). The reseach was carried out to assess the effect of drought stress at various soil water availabilities during generative stage on pod yield, pod and seed physical qualities. The experiment was conducted at Muneng Experimental Farm, Probolinggo District during July-October 2012. Five genotypes were arranged in a RCB design, with 3 replicates. The replications were nested into four treatments of soil water availability (0-100, 0-85, 0-70,0-55 days after sowing/DAS). The pods were harvested at 102 days after sowing. The result showed that the shorter the water availability, the lower the leaf relative water content, pod and seed water contents, number of mature pods, seed size, and intact seeds weight. Pod yield reduced when water was available upto 55 DAS only. Turangga variety had the highest pod yield (1.626 ton ha-1) with low pod and seed physical qualities. GH-51 yielded in 1.076 ton ha-1 with superior pod and seed physical qualities. Despite of its lowest pod yield (0.964 ton ha-1), J-11 produced the same pod and seed physical qualities as GH 51 did. ICGV 86590 was superior on its pod yield (1.338 ton ha-1) with low pod and seed physical qualities. Kancil variety did not perform any superiority.<br /><br />Keywords: intact seeds, leaf relative water content, pod moisture content, seed moisture content


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 821
Author(s):  
Csaba Mátyás ◽  
František Beran ◽  
Jaroslav Dostál ◽  
Jiří Čáp ◽  
Martin Fulín ◽  
...  

Research Highlights: Data of advanced-age provenance tests were reanalyzed applying a new approach, to directly estimate the growth of populations at their original sites under individually generated future climates. The results revealed the high resilience potential of fir species. Background and Objectives: The growth and survival of silver fir under future climatic scenarios are insufficiently investigated at the xeric limits. The selective signature of past climate determining the current and projected growth was investigated to analyze the prospects of adaptive silviculture and assisted transfer of silver fir populations, and the introduction of non-autochthonous species. Materials and Methods: Hargreaves’ climatic moisture deficit was selected to model height responses of adult populations. Climatic transfer distance was used to assess the relative drought stress of populations at the test site, relating these to the past conditions to which the populations had adapted. ClimateEU and ClimateWNA pathway RCP8.5 data served to determine individually past, current, and future moisture deficit conditions. Besides silver fir, other fir species from South Europe and the American Northwest were also tested. Results: Drought tolerance profiles explained the responses of transferred provenances and predicted their future performance and survival. Silver fir displayed significant within-species differentiation regarding drought stress response. Applying the assumed drought tolerance limit of 100 mm relative moisture deficit, most of the tested silver fir populations seem to survive their projected climate at their origin until the end of the century. Survival is likely also for transferred Balkan fir species and for grand fir populations, but not for the Mediterranean species. Conclusions: The projections are less dramatic than provided by usual inventory assessments, considering also the resilience of populations. The method fills the existing gap between experimentally determined adaptive response and the predictions needed for management decisions. It also underscores the unique potential of provenance tests.


2021 ◽  
Vol 13 (5) ◽  
pp. 2923
Author(s):  
Botir Khaitov ◽  
Munisa Urmonova ◽  
Aziz Karimov ◽  
Botirjon Sulaymonov ◽  
Kholik Allanov ◽  
...  

Water deficiency restricts plant productivity, while excessive soil moisture may also have an adverse impact. In light of this background, field trials were conducted in secondary saline soil (EC 6.5 dS m−1) at the experimental station of Tashkent State Agrarian University (TSAU), Uzbekistan to determine drought tolerance of licorice (Glycyrrhiza glabra) by exposure to four levels of water deficit, namely control (70–80%), moderate (50–60%), strong (30–40%) and intense (10–20%) relative water content (WC) in the soil. The moderate drought stress exhibited positive effects on the morphological and physiological parameters of licorice, and was considered to be the most suitable water regime for licorice cultivation. Plant growth under the 50–60% WC treatment was slightly higher as compared to 70–80% WC treatment, exhibiting weak water deficit promotes licorice growth, root yield and secondary metabolite production. In particular, secondary metabolites i.e., ash, glycyrrhizic acid, extractive compounds and flavonoids, tended to increase under moderate water deficit, however further drought intensification brought a sharp decline of these values. These results contribute to the development of licorice cultivation technologies in arid regions and the most important consideration is the restoration of ecological and economical functions of the dryland agricultural system.


Genetika ◽  
2012 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Ahmad Golparvar

Mode of gene action, heritability and determination of the effective breeding strategy for improvement of physiological and traits specifically in drought stress conditions is very important. Therefore, this study was conducted by using two drought susceptible and tolerant wheat cultivars. Cultivars Sakha8 (tolerant) and Pishtaz (susceptible) as parents along with F1, F2, BC1 and BC2 generations were sown in a randomized complete block design with three replications in drought stress conditions. Results of analysis of variance indicated significant difference between generations as well as degree of dominance revealed over-dominance for the both traits. Fitting simple additive-dominance model designated that this model was not able to account for changes of traits relative water content and mean of grain filling rate. It was revealed that m-d-h-i-j model for relative water content and m-d-h-i model for mean of grain filling rate are the best models. Estimation of heritability and mode of gene action indicated that selection for improvement of traits studied in stress condition and specifically in early generations have medium genetic gain. In conclusion, grain filling rate is better than relative water content as indirect selection criteria to improve plant grain yield in drought stress condition.


2019 ◽  
Vol 18 (6) ◽  
pp. 75-84
Author(s):  
Alireza Motallebi-Azar ◽  
István Papp ◽  
Anita Szegő

Dehydrins are proteins that play a role in the mechanism of drought tolerance. This study aimed at establishing dehydrin profile and accumulation in four local melon varieties of Iran: Mino, Dargazi, Saveii, and Semsori, as well as in a commercial variety Honeydew. Plants were treated with drought stress by adjusting the soil water content to 75, 50, 40, 30 and 20% of field capacity (FC) by withholding water. Water status of plants was monitored based on the seedling fresh weight (FW) and relative water content of leaves (RWC). Total protein content was extracted, then heat-stable protein (HSP) fraction was isolated for each variety and water stress treatment. After SDS-PAGE of HSP, Western blotting analysis was carried out with Anti-dehydrin rabbit (primary) and Goat anti rabbit (secondary) antibodies. ANOVA results showed that with decreasing FC below 75%, FW and RWC decreased, but these changes significantly varied among genotypes. On the basis of FW and RWC data under different drought stress treatments, the following drought-tolerant ranking was established: Mino > Dargazi > Saveii and Honeydew > Semsori, from tolerant to sensitive order. Results of Western blot analysis showed that expression of some proteins with molecular weights of 19–52 kDa was induced in the studied varieties under drought stress (% FC). Expression level of the dehydrin proteins in different varieties was variable and also depending on the drought stress level applied. However, dehydrin proteins (45 and 50 kDa) showed strong expression levels in all varieties under severe drought stress (20% FC). The abundance of dehydrin proteins was higher in tolerant varieties (Mino and Dargazi) than in moderate and drought sensitive genotypes. Consequently, dehydrins represent a potential marker for selection of genotypes with enhanced drought tolerance.


Author(s):  
Xenia Hao-Yi Yeoh ◽  
Blessing Durodola ◽  
Kathrin Blumenstein ◽  
Eeva Terhonen

The major threats to the sustainable supply of forest tree products are adverse climate, pests and diseases. Climate change, exemplified by increased drought, poses a unique threat to global forest health. This is attributed to the unpredictable behavior of forest pathosystems, which can favor fungal pathogens over the host under persistent drought stress conditions in the future. Currently, the effects of drought on tree resistance against pathogens are hypothetical, thus research is needed to identify these correlations. Norway spruce (Picea abies) is one of the most economically important tree species in Europe, and is considered highly vulnerable to changes in climate. Dedicated experiments to investigate how disturbances will affect the Norway spruce - Heterobasidion sp. pathosystem are important, in order to develop different strategies to limit the spread of H. annosum s.l. under the predicted climate change. Here, we report a transcriptional study to compare Norway spruce gene expressions to evaluate the effects of water availability and the infection of Heterobasidion parviporum. We performed inoculation studies of three-year-old saplings in a greenhouse (purchased from a nursery). Norway spruce saplings were treated in either high (+) or low (-) water groups: high water group received double the water amount than the low water group. RNA was extracted and sequenced. Similarly, we quantified gene expression levels of candidate genes in biotic stress and jasmonic acid (JA) signaling pathways using qRT-PCR, through which we discovered a unique preferential defense response of H. parviporum-infected Norway spruce under drought stress at the molecular level. Disturbances related to water availability, especially low water conditions can have negative effects on the tree host and benefit the infection ability of the pathogens in the host. From our RNA-seq analysis, 114 differentially expressed gene regions were identified between high (+) and low (-) water groups under pathogen attack. None of these gene pathways were identified to be differentially expressed from both non-treated and mock-control treatments between high (+) and low (-) water groups. Finally, only four genes were found to be associated with drought in all treatments.


2020 ◽  
Author(s):  
zahra khazaei ◽  
Asghar Estaji

Abstract Background: Drought is also one of the most widespread abiotic stresses that adversely effects the growth and development of plants. To investigate the effect of salicylic acid and drought stress on several physiological and chemical reactions in sweet pepper plants, the experiment was achieved as a factorial based on a completely randomized design in greenhouse. Drought stress levels were non-stress conditions (irrigation with field capacity), moderate stress (30% field capacity irrigation) and intense water stress (60% field capacity irrigation) and three concentrations of salicylic acid included 0 (as control), 0.5 and 1 mM were sprayed on the plant in three to four leaf stages. Results: The results showed that drought decreased fresh and dry weight of shoots and roots, leaf relative water content (RWC), fruit diameter and length, the index including chlorophyll and leaf area and increased electrical conductivity (EC), antioxidant activity, total phenolic content, ascorbate, polyphenol oxidase (PPO) and ascorbate peroxidase (APX) activity. After application of foliar salicylic acid, all of the above parameters, except the electrical conductivity content, increased. Conclusions: From the results of this experiment it is concluded that salicylic acid provides a better tolerance for drought stress in pepper plant through its influence on vegetative, biochemical and physiological characteristics.


2021 ◽  
Vol 74 ◽  
Author(s):  
Piyaporn Phansak ◽  
Supatcharee Siriwong ◽  
Nantawan Kanawapee ◽  
Kanjana Thumanu ◽  
Wuttichai Gunnula ◽  
...  

Abstract Drought isa major constraint in many rainfed areas and affects rice yield. We aimed to characterize the physiological changes in rice in response to drought using Fourier transform infrared (FTIR) spectroscopy. Eighty rice landrace seedlings were subjected to drought in the greenhouse using a PEG 6000. Physiological parameters, including total chlorophyll content, relative water content, electrolyte leakage, and biochemical changes were evaluated. Based on the FTIR results, the landraces were divided into three main groups: tolerant, moderately tolerant, and susceptible. Principal component analysis revealed spectral differences between the control and drought stress treatment groups. Lipid, pectin, and lignin content increased after drought stress. The biochemical components of plants at different drought tolerance levels were also compared. The lipid (CH2 and CH3), lignin (C=C), pectin (C=O), and protein (C=O, N–H) contents were the highest in the drought-tolerant cultivars, followed by the moderately tolerant and susceptible cultivars, respectively. Cultivar 17 and 49 were the most tolerant, and the functional groups were identified and characterized using FTIR. Overall, these results will be useful in selecting parental cultivars for rice breeding programs.


Sign in / Sign up

Export Citation Format

Share Document