scholarly journals Sustainability, certification, and regulation of biochar

2012 ◽  
Vol 47 (5) ◽  
pp. 649-653 ◽  
Author(s):  
Frank G. A. Verheijen ◽  
Luca Montanarella ◽  
Ana Catarina Bastos

Biochar has a relatively long half-life in soil and can fundamentally alter soil properties, processes, and ecosystem services. The prospect of global-scale biochar application to soils highlights the importance of a sophisticated and rigorous certification procedure. The objective of this work was to discuss the concept of integrating biochar properties with environmental and socioeconomic factors, in a sustainable biochar certification procedure that optimizes complementarity and compatibility between these factors over relevant time periods. Biochar effects and behavior should also be modelled at temporal scales similar to its expected functional lifetime in soils. Finally, when existing soil data are insufficient, soil sampling and analysis procedures need to be described as part of a biochar certification procedure.

2021 ◽  
Vol 13 (15) ◽  
pp. 8420
Author(s):  
Peter W. Sorensen ◽  
Maria Lourdes D. Palomares

To assess whether and how socioeconomic factors might be influencing global freshwater finfisheries, inland fishery data reported to the FAO between 1950 and 2015 were grouped by capture and culture, country human development index, plotted, and compared. We found that while capture inland finfishes have greatly increased on a global scale, this trend is being driven almost entirely by poorly developed (Tier-3) countries which also identify only 17% of their catch. In contrast, capture finfisheries have recently plateaued in moderately-developed (Tier-2) countries which are also identifying 16% of their catch but are dominated by a single country, China. In contrast, reported capture finfisheries are declining in well-developed (Tier-1) countries which identify nearly all (78%) of their fishes. Simultaneously, aquacultural activity has been increasing rapidly in both Tier-2 and Tier-3 countries, but only slowly in Tier-1 countries; remarkably, nearly all cultured species are being identified by all tier groups. These distinctly different trends suggest that socioeconomic factors influence how countries report and conduct capture finfisheries. Reported rapid increases in capture fisheries are worrisome in poorly developed countries because they cannot be explained and thus these fisheries cannot be managed meaningfully even though they depend on them for food. Our descriptive, proof-of-concept study suggests that socioeconomic factors should be considered in future, more sophisticated efforts to understand global freshwater fisheries which might include catch reconstruction.


2020 ◽  
Vol 5 (10) ◽  
pp. e002885
Author(s):  
Danielle N Poole ◽  
Bethany Hedt-Gauthier ◽  
Till Bärnighausen ◽  
Stéphane Verguet ◽  
Marcia C Castro

IntroductionThe identification of spatial–temporal clusters of forced migrant mortality is urgently needed to inform preventative policies and humanitarian response. As a first step towards understanding the geography of forced migrant mortality, this study investigates spatial–temporal patterns in death at a global scale.MethodsWe used information on the location and dates of forced migrant deaths reported in the International Organization for Migration’s Missing Migrant Project from 2014 to 2018. Kulldorff’s spatial–temporal and seasonal scans were used to detect spatial–temporal and temporal heterogeneity in mortality.ResultsA total of 16 314 deaths were reported during the study period. A preponderance of deaths occurred at sea each year (range 26%–54% across 5 years). Twelve spatial–temporal clusters of forced migrant mortality were detected by maximum likelihood testing. Annually, the period of August–October was associated with a 40-percentage-point increase in the risk of mortality, relative to other time periods.ConclusionsDeath during forced migration occurs close to national borders and during periods of intense conflict. This evidence may inform the design of policies and targeting of interventions to prevent forced migration-related deaths.


1997 ◽  
Vol 9 (S1) ◽  
pp. 173-176 ◽  
Author(s):  
John C. Morris

Global staging measures for dementia of the Alzheimer type (DAT) assess the influence of cognitive loss on the ability to conduct everyday activities and represent the “ultimate test” of efficacy for antidementia drug trials. They provide information about clinically meaningful function and behavior and are less affected by the “floor” and “ceiling” effects commonly associated with psychometric test. The Washington University Clinical Dementia Rating (CDR) is a global scale developed to clinically denote the presence of DAT and stage its severity. The clinical protocol incorporates semistructured interviews with the patient and informant to obtain information necessary to rate the subject's cognitive performance in six domains: memory, orientation, judgment and problem solving, community affairs, home and hobbies, and personal care. The CDR has been standardized for multicenter use, including the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) and the Alzheimer's Disease Cooperative Study, and interrater reliability has been established. Criterion validity for both the global CDR and scores on individual domains has been demonstrated, and the CDR also has been validated neuropathologically, particularly for the presence or absence of dementia. Standardized training protocols are available. Although not well suited as a brief screening tool for population surveys of dementia because the protocol depends on sufficient time to conduct interviews, the CDR has become widely accepted in the clinical setting as a reliable and valid global assessment measure for DAT.


2003 ◽  
Vol 95 (2) ◽  
pp. 352-364 ◽  
Author(s):  
D. L. Corwin ◽  
S. M. Lesch ◽  
P. J. Shouse ◽  
R. Soppe ◽  
J. E. Ayars

Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 256 ◽  
Author(s):  
Patrick Nyambo ◽  
Thembalethu Taeni ◽  
Cornelius Chiduza ◽  
Tesfay Araya

Soil acidification is a serious challenge and a major cause of declining soil and crop productivity in the Eastern parts of South Africa (SA). An incubation experiment investigated effects of different maize residue biochar rates on selected soil properties and soil loss in acidic Hutton soils. Biochar amendment rates were 0%, 2.5%, 5%, 7.5%, and 10% (soil weight) laid as a completely randomized design. Soil sampling was done on a 20-day interval for 140 days to give a 5 × 7 factorial experiment. Rainfall simulation was conducted at 60, 100 and 140 days after incubation to quantify soil loss. Relative to the control biochar amendments significantly improved soil physicochemical properties. After 140 days, biochar increased soil pH by between 0.34 to 1.51 points, soil organic carbon (SOC) by 2.2% to 2.34%, and microbial activity (MBC) by 496 to 1615 mg kg−1 compared to control. Soil aggregation (MWD) changes varied from 0.58 mm to 0.70 mm for the duration of the trial. Soil loss significantly decreased by 27% to 70% under biochar amendment compared to control. This indicates that maize residue biochar application has the potential to improve the soil properties and reduce soil loss in the degraded acidic Hutton soil.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 661-675
Author(s):  
Roisin O'Riordan ◽  
Jess Davies ◽  
Carly Stevens ◽  
John N. Quinton

Abstract. Urban soils are of increasing interest for their potential to provide ecosystem services such as carbon storage and nutrient cycling. Despite this, there is limited knowledge on how soil sealing with impervious surfaces, a common disturbance in urban environments, affects these important ecosystem services. In this paper, we investigate the effect of soil sealing on soil properties, soil carbon and soil nutrient stocks. We undertook a comparative survey of sealed and unsealed green space soils across the UK city of Manchester. Our results reveal that the context of urban soil and the anthropogenic artefacts added to soil have a great influence on soil properties and functions. In general, sealing reduced soil carbon and nutrient stocks compared to green space soil; however, where there were anthropogenic additions of organic and mineral artefacts, this led to increases in soil carbon and nitrate content. Anthropogenic additions led to carbon stocks equivalent to or larger than those in green spaces; this was likely a result of charcoal additions, leading to carbon stores with long residence times. This suggests that in areas with an industrial past, anthropogenic additions can lead to a legacy carbon store in urban soil and make important contributions to urban soil carbon budgets. These findings shed light on the heterogeneity of urban sealed soil and the influence of anthropogenic artefacts on soil functions. Our research highlights the need to gain a further understanding of urban soil processes, in both sealed and unsealed soils, and of the influence and legacy of anthropogenic additions for soil functions and important ecosystem services.


2019 ◽  
Author(s):  
Xia Zhao ◽  
Yuanhe Yang ◽  
Haihua Shen ◽  
Xiaoqing Geng ◽  
Jingyun Fang

Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. However, the quantitative linkages between soil properties, climate, and biota at the global scale remain unclear. By compiling a comprehensive global soil database, we mapped eight major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon [SOC] density; soil total nitrogen [STN] density; and soil C : N mass ratios) in the surface (0–30 cm) soil layer based on machine learning algorithms, and demonstrated the quantitative linkages between surface soil properties, climate, and biota at the global scale (i.e., global soil-climate-biome diagram). On the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; Soil pH decreased with higher MAP and lower MAT, and the critical MAP for the transition from alkaline to acidic soil decreased with decreasing MAT; SOC density and STN density both were jointly affected by MAT and MAP, showing an increase at lower MAT and a saturation tendency towards higher MAP. Surface soil physical and chemical properties also showed remarkable variations across biomes. The soil-climate-biome diagram suggests the co-evolution of the soil, climate, and biota under global environmental change.


Sign in / Sign up

Export Citation Format

Share Document