scholarly journals Growth and yield of Cantaloupe melon 'Acclaim' in protected cultivation using agrotextile

2014 ◽  
Vol 32 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Francisco GB Santos ◽  
Maria Z Negreiros ◽  
José F Medeiros ◽  
Welder AR Lopes ◽  
Alinne M Soares ◽  
...  

In Rio Grande do Norte, the melon growers have been using the row cover on the roof of the plants to start flowering in order to reduce the population of insect pests that cause severe losses, rising production costs, especially with the application of defensive. Thus, it is important to know the best time to remove the row cover because, due to its use, it is assumed that there are changes in the physiological response of plants. In order to evaluate the growth and yield of the melon plants 'Acclaim' cultivated under protection agrotextile (TNT) for different periods, a trial was conducted at the Universidade Federal Rural do Semi-árido, Mossoró, Rio Grande do Norte state. The experimental design was a randomized complete block, with four replications, in a splitplot, the plots were the plant protection periods (0, 18, 21, 24, 27 and 30 days after transplanting, DAT), and splitplots, times of sampling the plants (13, 20, 27, 34, 41, 48 and 55 DAT). We evaluated the dry matter accumulation in leaves (LDMA), branches (BDMA), flowers (FDMA), fruits (FrdMA) and total (TDMA), assimilate partitioning, leaf area index (LAI), leaf weight ratio (LWR), absolute growth rate (AGR) and relative (RGR), net assimilation rate (NAR), total (PTOT) and marketable productivity (PCOM). The treatments with plant protection did not affect the TDMA which peaked at 295.12 g plant-1 at 53 DAT, with the fruits behaving like sink preferred plant, accounting for 72.25% of the dry mass accumulated. The LAI and the AGR grew by 55 and 42 DAT (1.95 and 18.518 g/plant/day), respectively, while the LWR and RGR decreased over the cycle, with peaks of 0.911 and 0.242 g/g/day, at 13 and 20 DAT, respectively. The PTOT and PCOM were not affected by periods of plant protection, with averages of 29.30 and 22.25 t ha-1, respectively, indicating that it is possible to manage the row cover in order to remove it later, that reduces costs and crop protection without significant loss in productivity.

The application of preparations of biological origin in the protection system of soybean grown under conditions of intensive irrigated crop rotations conforms to the modern tendencies of science and production development. The use of them contributes to solving ecological, production and social-economic problems. The study presents the three-year research on the efficiency of systems protecting soybean from pests and diseases based on biological and chemical preparations. The research was conducted in typical soil and climate conditions of the South of Ukraine. Zonal agricultural methods and generally accepted research methodology were used. The purpose of the research was to create a soybean protection system based on preparations of biological origin, ensuring high productivity of high-quality products reducing a negative impact of the crop production on the environment. The study emphasizes that, under irrigated conditions of the South of Ukraine, the application of biological preparations has a positive impact on the indexes of growth, development and formation of the elements of soybean yield structure. There was an increase in the crop biological weight by 13.8 % and 22.1 % and the number of seeds per plant rose by 11.6 and 14.6 % as a consequence of eliminating harmful organisms with the plant protection systems. The larger ground mass was formed by medium-ripe varieties Danai and Svyatogor, on which the increase from protection measures was higher. Weight 1000 pcs. the seeds did not undergo significant changes. It is established that the larger seeds were formed by Danaya and Svyatogor varieties, in which the average weight is 1000 pcs. seeds were 142 and 136 g, respectively, while in the variety Diona this figure was 133 g. There was an increase in the height of the lowest pod when the total plant height rose. For medium-ripe varieties was characterized by a higher attachment of beans, where the highest values of this indicator acquired in the variety Svyatogor. The medium maturing soybean variety Danaia formed the maximum yield of 3.23 and 3.35 t/ha respectively, when biological and chemical protection systems were applied. The research establishes that the application of the bio-fungicide Psevdobakterin 2 (2.0 l/ha) in the crop protection system at the beginning of soybean flowering and the bio-fungicide Baktofit (2.5 l/ha) with the bio-insecticide Lepidotsid-BTU (10.0 l/ha) at the beginning of pod formation does not reduce the productivity of the soybean varieties under study considerably, when compared to the application of chemical preparations. The research determines that the soybean protection system under study ensures a decrease in the coefficient of soybean water uptake by 7.2-13.0 %, increasing the total water intake to an inconsiderable degree. Biologization of the soybean crop protection system leads to a reduction in production costs compared to the chemical protection system. Taking into account the needs for the collection of additional products, costs increase by an average of 1 thousand UAH/ha, while for chemical protection systems by 1.8 thousand UAH/ha. At the same time, the cost is reduced by 220-360 UAH/t and the profitability of growing crops is increased by 3.8-7.8 %. There has been a reduction in the burden of pesticides on the environment and the production of cleaner products. This indicates the prospect of using the biofungicides Pseudobacterin 2 and Bactophyte and the bioinsecticide Lepidocid-BTU on soybeans to protect plants from pests.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
S. HUSSAIN ◽  
A. KHALIQ ◽  
A.A. BAJWA ◽  
A. MATLOOB ◽  
A. AREEB ◽  
...  

ABSTRACT: Understanding the weed interference with different sowing times of crop is inevitable for forecasting yield losses by weed infestation and designing sustainable weed management systems. A field experiment was carried out to evaluate the effects of sowing dates (20th November, 10th December) and various little seed canary grass (LCG) infestation levels (10, 20, 30 and 40 plant m-2) on growth and yield of wheat under semiarid conditions. Plots with two natural infestations of weeds including LCG (Unweeded control; UWC) and excluding LCG (UWC-LCG) were maintained for comparing its interference in pure stands with designated densities. A season-long weed-free (WFC) treatment was also run. All the weeds/LCG infestation levels starting from 10 LCG plants m-2 considerably reduced the wheat growth (leaf area index, crop growth rate, total dry matter accumulation) and hampered the yield contributing factors in both sowing dates. Presence of LCG was more detrimental for growth of late-sown wheat (10th Dec), therefore, 40 LCG plants m-2 recorded more reductions in growth indices of wheat even than UWC. In late sown wheat crop, the grain yield losses by 40 LCG plants m-2 and UWC were comparable, however, these losses were much greater than UWC LCG. In crux, delay in sowing of wheat not only reduced the crop growth and yield but also enhanced the LCG/weed interference. Furthermore, greater competitive ability of LCG particularly for late-sown wheat suggests that it should be controlled in order to provide healthy environment for crop plants.


Author(s):  
Tran Xuan Minh ◽  
Nguyen Cong Thanh ◽  
Tran Hau Thin ◽  
Nguyen Thi Huong Giang ◽  
Nguyen Thi Tieng

Background: Peanut (Arachis hypogaea L.) is one of the oil and cash crops in Vietnam. However, owing to the lack of appropriate management practices, the production and the area under cultivation of peanut have remained low. Mulches are the key factors contributing to promoting crop development and early harvest and increasing yields. Methods: The experiment consisted of three mulch treatments, viz., plastic mulch, straw mulch and no-mulch control. All the treatments were replicated thrice in a complete randomized block design. Result: In the conditions of mulch, the plant growth parameters (germination rate, growing time, plant height, number of branches per plant), leaf area index, the number of nodules per plant, dry matter accumulation, yield components and yield of peanut was much higher than that of no-mulch control. Among the mulches, plastic mulch was found superior to straw mulch in the pod yields and water-use efficiency and moisture conservation, thereby can be considered as a reliable practice for increasing the productivity of peanut on the coastal sandy land in Nghe An province, Vietnam.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 267-276
Author(s):  
AMRENDER KUMAR ◽  
A. K. JAIN ◽  
B. K. BHATTACHARYA ◽  
VINOD KUMAR ◽  
A. K. MISHRA ◽  
...  

Models are means to capture, condense and organize knowledge. These are expressions, which represent relationship between various components of a system. A well-tested weather-based model can be an effective scientific tool for forewarning insect-pests and diseases in advance so that timely plant protection measures could be taken up. Various types of techniques have been developed for the purpose. The simplest technique forms the class of thumb rules, which are based on experience. Though these do not have much scientific background but are extensively used to provide quick forewarning of the menace. Another tool in practice is regression model that represents relationship between two or more variables so that one variable can be predicted from the other (s). Linear and non-linear regression models have been widely used in studying relationship of insect-pests and diseases with time and weather variables (as such or in some transformed forms). With the advent of computers more sophisticated techniques such as simulation modelling and machine learning approach such as decision tree induction algorithms, genetic algorithms, neural networks, rough sets, etc. have been explored. A number of simulation models have been developed all over the world for quantifying effects of various factors including weather on agriculture.  These may provide a good forecast but require detailed data base, which may not be available. Machine learning approach has recently received some attention. As opposed to traditional model-based methods, machine learning approach is self adaptive methods in that there are a few a priori assumptions about the models for problem(s) under study. This technique learns more from examples and captures subtle functional relationships among the data even if the underlying relationships are unknown or hard to describe.  This modelling approach with ability to learn from experience is very useful for many practical problems provided enough data are available. Remotely sensed data can provide useful information relating to area under the crop and also the condition thereof. It has certain advantages over land use statistics due to multi-spectral, synoptic and repetitive coverage. An attempt has been made for accurate estimation of area affected by insect-pests and diseases in crops along with accurate assessment of damage due to the same are possible for providing compensation to farmers. In this study, an Integrated Decision Support System (IDSS) for Crop Protection Services is also discussed.  


Author(s):  
Kuldeep Singh ◽  
Rakesh Sharma

A field experiment was conducted during Rabi season of 2015-16 at the Students’ Research Farm, Khalsa College Amritsar, on sandy loam soil, low in organic carbon and available N, Medium in available P and high in available K. Field experiment was laid out in split plot design comprising four methods of sowing such as (Bed Planting, Zero tillage, Flat drilling, Happy seeder) and two row orientation as (North-South and East-West) replicated four times. Bed planting method produced significantly higher growth characters (i.e. plant height, leaf area index and dry matter accumulation, yield contributing characters effective tillers, grains ear-1, grain and straw yield, harvest index and B C ratio) than happy seeder and zero tillage sowing Bed planting recorded 14% and 10.48% higher grain yield over happy seeder and zero tillage sowing, respectively. Between row orientations, north-south row orientation produced higher growth and yield attributes than east-west whereas grain yield and biological yield was 3.86% and 3.77% higher than east-west sowing direction respectively.


2016 ◽  
Vol 8 (2) ◽  
pp. 515-520 ◽  
Author(s):  
Diwakar Mani ◽  
M.K. Singh ◽  
S.K. Prasad

Weeds are one of the primary factors responsible for reducing wheat yield. Despite, herbicides’ being one of the important components of weed management programme in India, but it was not adopted by resource poor farmers. Keeping these facts in view, a field experiment was carried out at Agricultural research farm, Institute of Agricultural sciences, Banaras Hindu University during the rabi (winter) season of the year 2012-13 to scrutinize the influence of ‘mulching’ and ‘varieties’ on weed control potential as well as growth and yield of wheat. The treatments comprised of five wheat varieties (C-306, K-8027, K-0307, DBW-39 and HD-2888) and four mulching treatments (No-mulch, paddy straw 6t/ha, maize straw 6t/ha, and saw dust 6t/ha). Surface application of paddy straw mulch 6t/ha considerably reduced the density and biomass of broad leafed weeds and grasses and showed higher weed control efficiency over other treatments like maize straw 6t/ha, saw dust 6t/ha and no-mulch. Varieties DBW-39 and K-0307 was highly effective in smothering of the weeds and produced higher dry matter accumulation, leaf area index, number of grain/earhead, biological yield and harvest index of wheat.


2011 ◽  
Vol 68 (2) ◽  
pp. 191-199 ◽  
Author(s):  
María Teresa Castellanos ◽  
María Jesús Cabello ◽  
María del Carmen Cartagena ◽  
Ana María Tarquis ◽  
Augusto Arce ◽  
...  

Nitrogen (N) is an important nutrient for melon (Cucumis melo L.) production. However there is scanty information about the amount necessary to maintain an appropriate balance between growth and yield. Melon vegetative organs must develop sufficiently to intercept light and accumulate water and nutrients but it is also important to obtain a large reproductive-vegetative dry weight ratio to maximize the fruit yield. We evaluated the influence of different N amounts on the growth, production of dry matter and fruit yield of a melon 'Piel de sapo' type. A three-year field experiment was carried out from May to September. Melons were subjected to an irrigation depth of 100% crop evapotranspiration and to 11 N fertilization rates, ranging 11 to 393 kg ha-1 in the three years. The dry matter production of leaves and stems increased as the N amount increased. The dry matter of the whole plant was affected similarly, while the fruit dry matter decreased as the N amount was increased above 112, 93 and 95 kg ha-1, in 2005, 2006 and 2007, respectively. The maximum Leaf Area Index (LAI), 3.1, was obtained at 393 kg ha-1 of N. The lowest N supply reduced the fruit yield by 21%, while the highest increased the vegetative growth, LAI and Leaf Area Duration (LAD), but reduced yield by 24% relative to the N93 treatment. Excessive applications of N increase vegetative growth at the expense of reproductive growth. For this melon type, rates about 90-100 kg ha-1 of N are sufficient for adequate plant growth, development and maximum production. To obtain fruit yield close to the maximum, the leaf N concentration at the end of the crop cycle should be higher than 19.5 g kg-1.


2016 ◽  
Vol 49 (4) ◽  
pp. 85-105 ◽  
Author(s):  
M. F. Mahmoud

AbstractThe development of resistance to synthetic insecticides is one of the driving forces for changes in insect pest management. Governments regulatory bodies are in favour of environmentally safe chemicals with low toxicity, short-term persistence, and limited effects on non-target organisms as predominantly requirements for pesticides registration. Biological control can be considered as a powerful tool and one of the most important alternative control measure providing environmentally safe and sustainable plant protection. The success of biological control will depend on understanding the adaptation and establishment of applied biological control agents in agricultural ecosystems. Microbial pathogens and arthropod biocontrol agents, entomopathogenic nematodes (EPNs) have been successfully used in agricultural systems. They are highly virulent, killing their hosts quickly and can be cultured easilyin vivoorin vitro.They are safe for non-target vertebrates and for the environment, and production costs have been significantly reduced in recent times as they are mass produced in liquid media. Moreover, no difficulties to apply EPNs as they are easily sprayed using standard equipment and can be combined with almost all chemical control compounds. EPNs are widely used to control economically important insect pests in different farming systems: from fruit orchards, cranberry bogs and turf grass to nurseries and greenhouses. The use of EPNs for biocontrol began only in early 1980s and involved a step-by-step scientific and technical development. Mass production of the nematodes played a key role in the commercially development of insect pests control with nematodes.


Author(s):  
Subhradip Bhattacharjee ◽  
V.M. Bhale ◽  
Pramod Kumar ◽  
Rakesh Kumar

Background: The black soils (vertisols) are often considered to be high in potassium content however; under intensive cultivation of high nutrient demanding crop like maize; the soil available potassium might not be sufficient to fulfil the demand. Moreover; the interaction between potassium and micronutrients like zinc has to evaluated for higher crop yield under dryland condition. Methods: The experiment was laid out in factorial RBD design with two factors, i.e., potassium (K) and zinc (Zn), with three levels of each (K1- 30 kg K2O ha-1, K2- 60 kg K2O ha-1, K3- 90 kg K2O ha-1; Zn1- 20 kg ZnSO4 ha-1, Zn2- 30 kg ZnSO4 ha-1 and Zn3- 40 kg ZnSO4 ha-1). Result: Statistical interpretation of experimental data revealed that application of potassium at 60 kg K2O ha-1 and 30 kg of ZnSO4 ha-1 resulted improved plant height, number of functional leaves plants-1, leaf area index, dry matter accumulation, grain yield, stover yield and shelling percentage in maize. Interestingly positive interaction has also been recorded between potassium and zinc nutrition.


Sign in / Sign up

Export Citation Format

Share Document