scholarly journals Soil nitrogen application in the spring did not increase apple yield

1999 ◽  
Vol 29 (4) ◽  
pp. 645-649 ◽  
Author(s):  
Paulo Roberto Ernani ◽  
Jaques Dias

Since there is no chemical method to assess N availability from field soil samples, this nutrient is still recommended based on regional field trials. This study aimed to evaluate the effect of spring application of N to the soil on fruit yield of apple cultivars. Two experiments were carried out, respectively for ‘Gala’ and ‘Fuji’. The trees, grafted on MM 106 rootstock, were planted in 1987, spaced 4.50 x 1.80m, in a clayed Oxisol (Hapludox) with 4.0% of organic matter, in Vacaria (RS), Southern Brazil. Treatments were applied annually, from the spring of 1990, in the tree row, over a 1.5-m-wide strip, as urea, and consisted of four rates of N corresponding to 0, 27.5, 55.0 and 82.5kg ha-1 in the first three years, and respectively 0, 50, 100 and 120kg ha-1 in the remaining two years. Data were collected for four years, starting at the 91/92 growing season. Application of increasing rates of N to the soil during five years had no effect on fruit yield and on concentration of N in the leaves regardless of year and cultivar. Average annual fruit yield varied from 50 to 70t ha-1 for ‘Gala’ and from 39 to 89t ha-1 for ‘Fuji’, but in the entire period the average yield was similar for both cultivars, approximately 56t ha-1. Concentration of N in the leaves was always in the normal range (2.0 to 2.5%) for ‘Fuji’, and slightly lower for ‘Gala’, but above 1.9%. Total N requirement for tree growth and fruiting, thus, came from soil organic matter decay.

2011 ◽  
Vol 41 (9) ◽  
pp. 1852-1870 ◽  
Author(s):  
Lucie Jerabkova ◽  
Cindy E. Prescott ◽  
Brian D. Titus ◽  
Graeme D. Hope ◽  
Michael B. Walters

One of the assumed advantages of variable-retention (VR) harvesting over clearcut harvesting is reduced postharvest leaching losses of nitrogen. We test this assumption by synthesizing results from long-term field trials in a meta-analysis. Overall, clearcutting significantly increased soil NO3-N concentration, NO3-N as a proportion of soluble inorganic nitrogen (SIN), N concentration in leachates, N flux, nitrification rates, and pH, but not total N, NH4-N, SIN concentration, ammonification, or N mineralization rate. The proportion of soil NO3-N in deciduous forests increased immediately and returned to preharvest levels within five years; the effect was delayed in coniferous forests, but levels remained elevated for several years. Deciduous leaf litter decomposed faster and needle litter decomposed more slowly on clearcut sites than in uncut forests. Single-tree selection caused smaller changes in NO3-N than removal of groups of trees (i.e., gap creation) and led to smaller increases in NO3-N as a proportion of SIN than clearcut harvesting. High levels of retention (>70%) were required to maintain uncut stand N-cycling characteristics. Postharvest NO3-N levels could be predicted from NO3-N availability in the uncut forests.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 145 ◽  
Author(s):  
Roberto Mancinelli ◽  
Rosario Muleo ◽  
Sara Marinari ◽  
Emanuele Radicetti

Ecological intensification, based on agricultural practices that promote ecosystem services, has been recently proposed to match crop yield and environmental concerns. Two-year experiments were conducted in a Mediterranean environment. The treatments were: (i) four intensification levels (common vetch (CV), ryegrass (RG), bare soil without Nitrogen (N) fertilization (Control-N0) and with 100 kg ha−1 of N fertilization (Control-N100) applied during pepper cultivation), and(ii) two soil tillage [soil tillage at 15 cm and 30 cm of soil depth (ST-15 and ST-30, respectively)]. The field experiment was disposed in a randomized block design with three replications. Cover crop, soil samples, and pepper samples were collected for analysis. Soil available nitrogen increased after soil tillage, especially in CV, which showed the highest fruit yield. The reduced soil N availability in RG decreased fruit yield and N uptake. The agro-physiological efficiency of pepper was similar in common vetch and Control-N100, while it was low in ryegrass. However, the adoption of RG increased the soil organic matter more than both control treatments, which, in turn, caused a depletion of soil organic matter. Moreover, reduced tillage practices for green manuring that both cover crops arepreferable to reduce external inputs in terms of fuel saving and farming operations.


1993 ◽  
Vol 73 (2) ◽  
pp. 197-208 ◽  
Author(s):  
J. E. Richards ◽  
J.-Y. Daigle ◽  
P. LeBlanc ◽  
R. Paulin ◽  
I. Ghanem

Greenhouse, field and laboratory studies were conducted to determine if N availability to corn (Zea mays L.) and NO3 leaching were affected by encapsulating conventional granular fertilizer within peat pellets (organo-mineral fertilizers or OMF). In the greenhouse, total N uptake by three 6-wk crops of corn from soil fertilized with NH4NO3 was 9.1% higher than the mean from soils fertilized with OMF made with urea (OMF-urea) or with NH4NO3 (OMF-AN). Total N uptake was 5.1% higher from soils fertilized with OMF-AN than OMF-urea. Differences in total N uptake among the fertilizers were constant across crops. In two field trials, total N uptake was slightly higher (4%) from soil fertilized with commercial NH4NO3 than with OMF-AN. In a laboratory experiment, NO3 from commercial NH4NO3 fertilizer leached more readily from soil than NO3 from OMF-AN. Approximately 95% of the NO3 from commercial NH4NO3 fertilizer leached from 3-cm soil cores in the first 50 mL of leachate whereas only 26% of the NO3 contained in OMF-AN leached. In another trial, NO3 from commercial NH4NO3 fertilizer leached more deeply than NO3 from OMF-AN after application of 2.5 cm irrigation water to soil in 63-cm leaching columns. Virtually no NO3 was retained within the OMF-AN pellet after leaching, suggesting that the retention of NO3 by OMF-AN used in our work is of limited duration. The OMF is an effective source of N to crops and is less prone to NO3 leaching losses than commercial NH4NO3 fertilizer when rain occurs soon after application. More work is required to determine the effect of pellet size and composition on NO3 retention, NO3 leaching losses and crop availability of N. Key words: Nitrate leaching, corn, organo-mineral fertilizers


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1988-1993 ◽  
Author(s):  
Timothy K. Hartz ◽  
Thomas G. Bottoms

As growers of processing tomato (Lycopersicon esculentum Mill.) adopt drip irrigation, plant vigor and fruit yield typically increase, suggesting a need for re-evaluation of established nitrogen (N) fertilization practices. Trials were conducted in California in 2007–2008 to evaluate growth and N uptake dynamics of drip-irrigated processing tomatoes across N fertigation regimes ranging from deficient to excessive. Whole plants were collected at 2-week intervals for determination of biomass and N content, recently matured whole leaves for total N and petioles for NO3-N. Additionally, six commercial fields were sampled at 3- to 4-week intervals to document N uptake and crop N status under conditions representative of the industry. A seasonal N rate of ≈200 kg·ha−1 appeared adequate to maximize fruit yield across the range of field conditions encountered. The four highest-yielding fields (143 Mg·ha−1 mean fresh fruit mass) averaged 14 Mg·ha−1 of above-ground biomass with fruit representing 62%; these fields averaged 296 kg·ha−1 biomass N, of which 71% was in fruit. The rate of biomass development and N uptake peaked during the period between early fruit setting and early red fruit development (a period of ≈6 weeks) during which N uptake averaged 4 to 5 kg·ha−1·d−1. Leaf N concentration was highly correlated with whole plant N (r2 = 0.83) and provided a reliable indicator of plant N sufficiency throughout the season. Petiole NO3-N did not reliably discriminate between crops with adequate or deficient N availability; current petiole NO3-N sufficiency guidelines are unrealistically high.


Author(s):  
Thâmara F. M. Cavalcanti ◽  
Geraldo R. Zuba ◽  
Regynaldo A. Sampaio ◽  
João P. Carneiro ◽  
Ely S. A. de Oliveira ◽  
...  

<title>ABSTRACT</title><p>The aim of this study was to evaluate the yield and nutrition of castor bean in response to fertilization with sewage sludge and potassium (K) and magnesium (Mg) sulphate. The experiment was carried out from January to July 2011. The treatments, in a randomized block design with three replicates, in a Nitosol, corresponded to a factorial scheme (2 x 4 +1): two doses of K and Mg sulphate combined with four doses of sewage sludge (0, 2.60, 5.20 and 10.40 t ha<sup>-1</sup>, dry basis), applied based on its nitrogen (N) content and the N requirement for the crop and an additional treatment with NPK. The castor bean grain yield fertilized with sewage sludge did not differ from conventional fertilization, with the maximum value achieved at a dose of 7.5 t ha<sup>-1</sup> of sewage sludge. The fertilization with sewage sludge increased zinc and copper levels in the soil to values close to or higher than those in conventional fertilization, without any influence on the concentrations in the leaf. Fertilization with K and Mg sulphate increased the levels of these cations in the soil without affecting the concentrations in the leaves. The fertilization with sewage sludge increased the contents of organic matter, sulfur, zinc, iron, copper and boron in the soil, and manganese and boron in castor bean leaves.</p>


2001 ◽  
Vol 1 ◽  
pp. 750-757 ◽  
Author(s):  
Stan Daberkow ◽  
Harold Taylor ◽  
Noel Gollehon ◽  
Milt Moravek

Given the societal concern about groundwater pollution from agricultural sources, public programs have been proposed or implemented to change farmer behavior with respect to nutrient use and management. However, few of these programs designed to change farmer behavior have been evaluated due to the lack of detailed data over an appropriate time frame. The Central Platte Natural Resources District (CPNRD) in Nebraska has identified an intensively cultivated, irrigated area with average groundwater nitrate-nitrogen (N) levels about double the EPA’s safe drinking water standard. The CPNRD implemented a joint education and regulatory N management program in the mid-1980s to reduce groundwater N. This analysis reports N use and management, yield, and groundwater nitrate trends in the CPNRD for nearly 3000 continuous-corn fields from 1989 to 1998, where producers faced limits on the timing of N fertilizer application but no limits on amounts. Groundwater nitrate levels showed modest improvement over the 10 years of this analysis, falling from the 1989–1993 average of 18.9 to 18.1 mg/l during 1994–1998. The availability of N in excess of crop needs was clearly documented by the CPNRD data and was related to optimistic yield goals, irrigation water use above expected levels, and lack of adherence to commercial fertilizer application guidelines. Over the 10-year period of this analysis, producers reported harvesting an annual average of 9729 kg/ha, 1569 kg/ha (14%) below the average yield goal. During 1989�1998, producers reported annually applying an average of 162.5 kg/ha of commercial N fertilizer, 15.7 kg/ha (10%) above the guideline level. Including the N contribution from irrigation water, the potential N contribution to the environment (total N available less estimated crop use) was estimated at 71.7 kg/ha. This is an estimate of the nitrates available for denitrification, volatilization, runoff, future soil N, and leaching to groundwater. On average, between 1989–1993 and 1994–1998, producers more closely followed CPNRD N fertilizer recommendations and increased their use of postemerge N applications � an indication of improved synchrony between N availability and crop uptake.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Takashi Kunito ◽  
Takashi Shiroma ◽  
Hitoshi Moro ◽  
Hirotaka Sumi

Annual variations in enzyme activities involved in carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling and soil physicochemical properties were examined in a Japanese paddy field. All the enzyme activities determined at the field soil temperature (range, 2.2°C–28.3°C) increased exponentially with soil temperature (p<0.001). Significant negative correlations were found between Bray-2P concentration and the ratio of acid phosphatase to β-D-glucosidase activity (Spearman r = −0.631, p = 0.005) and between total N and the ratio of L-asparaginase to β-D-glucosidase activity (r = −0.612, p=0.007), suggesting that in accordance with the resource allocation model, acid phosphatase and L-asparaginase were synthesized by microorganisms depending on the temporal changes in soil P and N availability. These results suggest the significance of soil temperature in controlling in situ enzyme activities in paddy soil and also that the stoichiometry of enzyme activities associated with C, N, and P acquisition reflects the soil nutrient availability.


2017 ◽  
Vol 47 (3) ◽  
Author(s):  
Gustavo Brunetto ◽  
◽  
Cesar Cella ◽  
Alcione Miotto ◽  
Eduardo Girotto ◽  
...  

ABSTRACT: Little is known about the impact of N fertilization on fruit production and composition in orange groves grown in soils with low or medium organic matter content in Rio Grande do Sul (RS). This study aimed to evaluate how N fertilization of orange trees cv. 'Lane Late' in a sandy soil may interfere in fruit yield and composition of fruit and juice. The experiment was conducted with orange trees cv. 'Lane Late' growing in Sandy Typic Hapludalf soil, in Rosário do Sul (RS). The plants received applications of 0, 20, 40, 60, 80, 100, 120, 140 and 160kg N ha-1. Total N in leaves, number of fruits per plant, yield, fresh weight, fruit diameter, peel thickness, percentage of fruit juice, peel color, juice color, ascorbic acid content, total soluble solids (TSS) and total titratable acidity were evaluated in 2010/2011 and 2011/2012 crops. In the first crop, especially yield, number of fruits per plant, TSS content in fruit juice and ratio decreased with increasing N rate applied. However, in the second crop, the total titratable acidity of the fruit juice prominently increased with the dose of N applied. In both crops, results were highly influenced by rainfall distribution, which affect the plant physiology, soil N dynamics and, consequently, probability of response to N applied and the loss of mineral N in the soil.


2004 ◽  
Vol 61 (8) ◽  
pp. 1493-1502 ◽  
Author(s):  
R K Johnson ◽  
M L Ostrofsky

Sediment concentrations of total and available nitrogen (N), phosphorus (P), and potassium (K) and organic matter from the littoral zone of Lake Pleasant, Pennsylvania, were highly variable. Only organic matter and total N were correlated with depth, however. This result suggests the existence of more complex environmental gradients than the prevailing paradigm of monotonic changes in sediment characteristics with increasing depth. The spatial heterogeneity of submersed aquatic plant communities was significantly correlated with depth, and available N and P. Canonical correspondence analysis demonstrated that these three factors explained 38% of the variance in community structure. Other sediment characteristics (available K, organic matter, and total N, P and K) were not significant by themselves, but all variables combined explained 63% of community-structure variance. Cluster analysis identified species or groups of species typical of endpoints on the depth versus nutrient axes. Myriophyllum exalbescens was typical of deep sites with relatively nutrient-rich sediments, whereas deep nutrient-poor sites were dominated by Vallisneria americana and Megalodonta beckii. Shallow nutrient-rich sites were dominated by several species of Potamogeton and Elodea canadensis, and shallow nutrient-poor sites were dominated by Heteranthera dubia and Najas flexilis. These results demonstrate the importance of sediment characteristics in determining macrophytes' community structure within lakes.


Sign in / Sign up

Export Citation Format

Share Document