scholarly journals Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of β-catenin

2009 ◽  
Vol 44 (1) ◽  
pp. 55-73 ◽  
Author(s):  
Michael A Gentile ◽  
Pascale V Nantermet ◽  
Robert L Vogel ◽  
Robert Phillips ◽  
Daniel Holder ◽  
...  

Androgens promote anabolism in the musculoskeletal system while generally repressing adiposity, leading to lean body composition. Circulating androgens decline with age, contributing to frailty, osteoporosis, and obesity; however, the mechanisms by which androgens modulate body composition are largely unknown. Here, we demonstrate that aged castrated rats develop increased fat mass, reduced muscle mass and strength, and lower bone mass. Treatment with testosterone or 5α-dihydrotestosterone (DHT) reverses the effects on muscle and adipose tissues while only aromatizable testosterone increased bone mass. During the first week, DHT transiently increased soleus muscle nuclear density and induced expression of IGF1 and its splice variant mechano growth factor (MGF) without early regulation of the myogenic factors MyoD, myogenin, monocyte nuclear factor, or myostatin. A genome-wide microarray screen was also performed to identify potential pro-myogenic genes that respond to androgen receptor activation in vivo within 24 h. Of 24 000 genes examined, 70 candidate genes were identified whose functions suggest initiation of remodeling and regeneration, including the type II muscle genes for myosin heavy chain type II and parvalbumin and the chemokine monocyte chemoattractant protein-1. Interestingly, Axin and Axin2, negative regulators of β-catenin, were repressed, indicating modulation of the β-catenin pathway. DHT increased total levels of β-catenin protein, which accumulated in nuclei in vivo. Likewise, treatment of C2C12 myoblasts with both IGF1Ea and MGF C-terminal peptide increased nuclear β-catenin in vitro. Thus, we propose that androgenic anabolism involves early downregulation of Axin and induction of IGF1, leading to nuclear accumulation of β-catenin, a pro-myogenic, anti-adipogenic stem cell regulatory factor.

2009 ◽  
Vol 204 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Anna de Lloyd ◽  
James Bursell ◽  
John W Gregory ◽  
D Aled Rees ◽  
Marian Ludgate

The impacts of hyper and hypothyroidism on body composition, i.e. the relative quantity and quality of bone, adipose tissue and muscle, have traditionally been attributed uniquely to abnormal levels of free thyroid hormones. The presence of biologically active TSH receptors in bone, fat and muscle, raises the possibility that both thyroid hormones and TSH contribute to the changes in body composition associated with thyroid disease. This review evaluates the evidence for this in terms of the in vitro experimental approaches applied, data from in vivo sources (i.e. mouse models) and patient-based studies.


2021 ◽  
Vol 22 (21) ◽  
pp. 11839
Author(s):  
Kaori Yasuda ◽  
Miyu Nishikawa ◽  
Hiroki Mano ◽  
Masashi Takano ◽  
Atsushi Kittaka ◽  
...  

We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.


2004 ◽  
Vol 199 (6) ◽  
pp. 763-774 ◽  
Author(s):  
Chunxiang Zhang ◽  
Daniel L. Baker ◽  
Satoshi Yasuda ◽  
Natalia Makarova ◽  
Louisa Balazs ◽  
...  

Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor–like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein–coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein.


2002 ◽  
Vol 283 (1) ◽  
pp. L163-L169 ◽  
Author(s):  
Kamran Atabai ◽  
Masanobu Ishigaki ◽  
Thomas Geiser ◽  
Iris Ueki ◽  
Michael A. Matthay ◽  
...  

Pretreatment with keratinocyte growth factor (KGF) ameliorates experimentally induced acute lung injury in rats. Although alveolar epithelial type II cell hyperplasia probably contributes, the mechanisms underlying KGF's protective effect remain incompletely described. Therefore, we tested the hypothesis that KGF given to rats in vivo would enhance alveolar epithelial repair in vitro by nonproliferative mechanisms. After intratracheal instillation (48 h) of KGF (5 mg/kg), alveolar epithelial type II cells were isolated for in vitro alveolar epithelial repair studies. KGF-treated cells had markedly increased epithelial repair (96 ± 22%) compared with control cells ( P < 0.001). KGF-treated cells had increased cell spreading and migration at the wound edge but no increase in in vitro proliferation compared with control cells. KGF-treated cells were more adherent to extracellular matrix proteins and polystyrene. Inhibition of the epidermal growth factor (EGF) receptor with tyrosine kinase inhibitors abolished the KGF effect on epithelial repair. In conclusion, in vivo administration of KGF augments the epithelial repair rate of alveolar epithelial cells by altering cell adherence, spreading, and migration and through stimulation of the EGF receptor.


2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.


Sign in / Sign up

Export Citation Format

Share Document