Dry friction behavior of barite-containing composites with pair steel

Author(s):  
F. F. Yusubov

This article is devoted to the preparation of environmentally friendly composites by powder metallurgy and the study of tribological properties. Tribological tests were carried out in MMW-1 friction machine with vertical block using the «pinon-disk» mechanism in dry conditions. As a counterbody, steel disc was used. To determine changes in the tribological characteristics in the studied samples at different loads, sliding distance and velocity were left unchanged. Ill. 4. Ref. 5. Tab. 3.

Tribologia ◽  
2021 ◽  
Vol 294 (6) ◽  
pp. 7-12
Author(s):  
Henryk Bąkowski ◽  
Zbigniew Krzysiak

The following work presents the results of research about the assessment of tribological properties of plastics used as components in modes of transport. For this purpose, the wear resistance of materials used in 3D printing (PA6CF and ABS), and extrusion moulding (PA) were tested. The tribological research was carried out with the use of the T-05 tester in the roller-block system. The samples in the form of cuboids with a concave rounding of one wall were made on a 3D printer using the FDM method. The counter-sample was a ring made of aluminium alloy subjected to anodizing. The research was carried out under a variable loads, in reciprocating motion, under dry friction conditions. After that the tribological characteristics were assessed. The research and analysis of the results confirmed the possibility of using selected plastics in modes of transport.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 102 ◽  
Author(s):  
Dzierwa ◽  
Pawlus ◽  
Zelasko

Wear tests were performed using a ball-on-disc tribological tester. In this study, 42CrMo4 steel disc of hardness 40 HRC co-acted with 100Cr6 steel ball with hardness of 60 HRC. Disc surfaces were created using vapor blasting to obtain values of the Sq parameter close to 5 µm. However, other disc surface topography parameters varied. Dry friction tests were carried out. Wear levels of discs and balls were measured using a white light interferometer Talysurf CCI Lite. It was found that the surface topography had a significant impact on tribological properties under dry sliding conditions. The research also allowed to identify significant dependencies between surface topography parameters and wear.


2017 ◽  
Vol 749 ◽  
pp. 246-250 ◽  
Author(s):  
Yoshimasa Hirai ◽  
Kohei Ogawa ◽  
Tomohiro Sato ◽  
Hatsuhiko Usami

Bronze based alloys have come to be used as bearing materials, and require low frictional properties. The present study describes the effects of surface finish machining history on the on tribological properties of sulfide-containing bronze sintered onto a steel disc. The sulfide phase consisted of copper, iron and sulfur, and acted as a solid lubricant. The relative density of the specimen was 90 % and the microstructure showed that the micro-sized sulfide dispersed into the bronze matrix and was accompanied by pores. Various processes, including cutting, burnishing, polishing were, applied to finish the surface. It was found that the area fraction of the sulfide phase depended on the cutting conditions. A further increase in the area fraction was achieved using roller burnishing after the cutting. Tribological properties were evaluated using chromium alloy steel (SUJ2) as the mating surface under dry conditions. The results showed that the friction coefficient depended on the surface finishing process. Therefore, the machining history had an effect on the frictional properties of the sulfide-containing bronze. Optimal cutting conditions for the sulfide containing bronze are also discussed.


2009 ◽  
Vol 147-149 ◽  
pp. 548-551 ◽  
Author(s):  
Marek Jałbrzykowski ◽  
Jerzy Nachimowicz

The paper presents selected results of tribological tests on ball bearings. The elements for tests were obtained from their manufacturer. Two groups of ball bearings were evaluated: 134-781TNG-2RS and CBK 441TNG. Tribological tests were conducted with SMT-1 device in two-stage cycle. The first stage involved tests based on the authors’ own method. In the second stage the tests were conducted according to the manufacturer’s recommendations (methodology). The obtained results indicate varied tribological characteristics of the tested ball bearings, both in reference to the parameters of the external function and the applied test method.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3172
Author(s):  
Tae-Hwan Lim ◽  
Chang-Soon Lee ◽  
In-Sik Cho ◽  
Auezhan Amanov

The current research reports the improvement in surface integrity and tribological characteristics of steel prepared using a powder metallurgy (PM) by ultrasonic nanocrystal surface modification (UNSM) at 25 and 300 °C. The surface integrity and tribological properties of three samples, namely, as-PM, UNSM-25 and UNSM-300 were investigated. The average surface roughness (Ra) of the as-PM, UNSM-25 and UNSM-300 samples was measured using a non-contact 3D scanner, where it was found to be 3.21, 1.14 and 0.74 µm, respectively. The top surface hardness was also measured in order to investigate the influence of UNSM treatment temperature on the hardness. The results revealed that the as-PM sample with a hardness of 109 HV was increased up to 165 and 237 HV, corresponding to a 32.1% and 57.2% after both the UNSM treatment at 25 and 300 °C, respectively. XRD analysis was also performed to confirm if any changes in chemistry and crystal size were took place after the UNSM treatment at 25 and 300 °C. In addition, dry tribological properties of the samples were investigated. The friction coefficient of the as-PM sample was 0.284, which was reduced up to 0.225 and 0.068 after UNSM treatment at 25 and 300 °C, respectively. The wear resistance was also enhanced by 33.2 and 52.9% after UNSM treatment at both 25 and 300 °C. Improvements in surface roughness, hardness and tribological properties was attributed to the elimination of big and deep porosities after UNSM treatment. Wear track of the samples and wear scar of the counter surface balls were investigated by SEM to reach a comprehensive discussion on wear mechanisms. Overall, it was confirmed that UNSM treatment at 25 and 300 °C had a beneficial effect on the surface integrity and tribological characteristics of sintered steel by the PM that is used in a shock absorber for a car engine.


2018 ◽  
Vol 19 (12) ◽  
pp. 658-661
Author(s):  
Sylwester Stawarz ◽  
Magdalena Stawarz ◽  
Robert Gumiński ◽  
Wojciech Kucharczyk

The article discusses the results of tribological tests of epoxy and resol composites. There was examined the surface condition of samples of composites operating in sliding nodes. It has been found that it is possible to use cheaper resole resins for sliding composites (instead of Epidian 5). Tests that have been carried out showed that increasing the PTFE content in the composite resulted in lowering both the coefficient of friction and wear. X-ray analysis results con-firmed the occurrence of the selective transfer phenomenon


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 358
Author(s):  
Magdalena Niemczewska-Wójcik ◽  
Manickaraj Pethuraj ◽  
Marimuthu Uthayakumar ◽  
Mohd Shukry Abdul Majid

Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the surface topography as well as the working conditions of the interacting parts. Therefore, extensive experiments are being conducted to improve the suitability of engineering materials (including AMC) for different applications. This paper presents research on manufactured aluminum metal matrix composites reinforced with 10 wt.% of Al2SiO5 (aluminum sillimanite). The manufactured and prepared samples were subjected to surface topography measurements and to tribological studies both with and without lubricant using a block-on-ring tester. Based on the results, analyses of the surface topography (i.e., surface roughness parameters, Abbott–Firestone curve, and surface defects) as well as of the tribological characteristics (i.a. friction coefficient, linear wear, and wear intensity) were performed. Differences in the surface topography of the manufactured elements were shown. The surface topography had a significant impact on tribological characteristics of the sliding joints in the tests where lubrication was and was not used. Better tribological characteristics were obtained for the surfaces characterized by greater roughness (determined on the basis of both the profile and surface texture parameters). In the case of tribological tests with lubrication, the friction coefficient as well as the wear intensity was significantly lower compared to tribological tests without lubrication. However, lower values of the friction coefficient and wear intensity were still recorded for the surfaces that were characterized by greater roughness. The obtained results showed that it is important to analyze the surface topography because surface characteristics influence tribological properties.


2018 ◽  
Vol 70 (2) ◽  
pp. 393-400 ◽  
Author(s):  
Shuhaib Mushtaq ◽  
Mohd Farooq Wani

Purpose This paper aims to investigate the effect of varying Wt.% (0-3 per cent) of graphite as a solid lubricant on the tribological properties of Fe-Cu-Sn alloy. Design/methodology/approach Powder metallurgy technique is used for the fabrication of Fe-Cu-Sn alloy with varying Wt.% of graphite. The tribological tests were conducted on a ball-on-disc universal tribometer under different testing conditions. Findings The friction coefficient decreases with sliding distance and load, but the wear rate increases with the increase in load. The G3 composition showed the best tribological properties under dry conditions. The wear mechanism of G0 composition shows adhesive wear and abrasive wear, while G1, G2 and G3 compositions show mildly abrasive wear. Originality/value This paper reported a new, cheap and wear-resistant self-lubricating Fe matrix material for gears and bearings.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

Metallic and alloyed coatings are used widely in several decorative and technology-based applications. In this work, we selected Sn coatings plated on Cu substrates for joining applications. We employed two different plating baths for the fabrication of Sn and Ni coatings: acidic stannous sulfate for Sn and Watts bath for Ni layer. The plating current densities were varied from 100–500 mA/cm2. Further, the wear and friction behavior of the coatings were studied using a ball-on-disc apparatus under dry sliding conditions. The impact of current density was studied on the morphology, wear, and coefficient of friction (COF) of the resultant coatings. The wear experiments were done at various loads from 2–10 N. The sliding distance was fixed to 7 m. The wear loss was quantified in terms of the volume of the track geometry (width and depth of the tracks). The results indicate that current density has an important role in tailoring the composition and morphology of coatings, which affects the wear properties. At higher loads (8–10 N), Sn coatings on Ni/Cu had higher volume loss with a stable COF due to a mixed adhesive and oxidative type of wear mechanism.


Sign in / Sign up

Export Citation Format

Share Document