scholarly journals Synthesis of Nano-Scale Biopolymer Particles from Legume Protein Isolates and Carrageenan

2020 ◽  
Vol 58 (2) ◽  
pp. 214-222
Author(s):  
Indika Dilrukshi Koralegedara ◽  
Charith Aravinda Hettiarachchi ◽  
Batugahage Don Rohitha Prasantha ◽  
Kuruppu Mudiyanselage Swarna Wimalasiri

Research background. Food proteins and polysaccharides can be used for the synthesis of nano-scale biopolymer particles with potential applications in the fields of food and pharmaceuticals. This study focuses on utilizing legume proteins for the production of biopolymer particles via regulation of their electrostatic interactions with carrageenan. Experimental approach. Protein isolates were obtained from mung bean (Vigna radiata), cowpea (Vigna unguiculata) and black gram (Vigna mungo) and their protein profiles were determined. Next, these isolates were allowed to interact with carrageenan at pH=5.0-7.0 to determine optimum conditions for obtaining nano-scale biopolymer particles. Selected biopolymer mixtures were then subjected to a heat treatment (85 °C for 20 min) to enhance the interactions among biopolymers. Results and conclusion. Nano-scale biopolymer complexes were obtained at pH=6.5. They were roughly spherical in shape with a majority having a diameter in the range of approx. 100-150 nm. Heating of the biopolymer mixtures increased the diameter of the biopolymer particles by approx. 2.5-fold. In addition, their negative surface charge was increased, stabilizing them against aggregation over a broader pH range (4.0-7.0), enhancing their potential to be utilized in food matrices. Novelty and scientific contribution. This study reports the applicability of mung bean, cowpea and black gram proteins for the synthesis of stable biopolymer particles. These biopolymer particles can be potentially used for the encapsulation and delivery of bioactive components.

Soil Research ◽  
1976 ◽  
Vol 14 (2) ◽  
pp. 197 ◽  
Author(s):  
MDA Bolland ◽  
AM Posner ◽  
JP Quirk

The surface charge of several natural kaolinites was measured in the pH range 3-10 using an exchange technique. The positive charge was found to increase with decreasing pH and sometimes to increase with increasing ionic strength; it occurred on the kaolinites at pH values as high as 9 and 10 and was particularly evident at high ionic strengths. The positive surface charge on kaolinites is thought to be due to exposed alumina such as is found on oxide surfaces. Aluminium was found to dissolve from kaolinite at pH values beiow about 6.5. Aluminium dissolution increased with decreasing pH and time. When the proportion of dissolved aluminium ions balancing negative surface charge was taken into account, the negative and net negative surface charge on kaolinite was concluded to be largely due to pH independent charge resulting from isomorphous substitution, together with some pH dependent charge due to exposed SiOH sites. If Na+ was the index cation, dissolved aluminium ions from the clay replaced some of the Na+ balancing the negative surface charge. However, when Cs+ was the index cation, less Cs+ balancing the negative surface charge on the clay was replaced by dissolved aluminium. As the concentration of either Na+ or Cs+ was increased, less dissolved aluminium replaced the index cation as a counteraction to the negative surface charge.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 371 ◽  
Author(s):  
Ying Gao ◽  
Yuexin Han ◽  
Wenbo Li

The flotation behaviors of diatomite and albite using dodecylamine (DDA) as a collector were investigated and compared. The pure mineral flotation results indicate that the flotability difference between albite and diatomite is above 87% at pH 5.5 to 10.5. The recovery of albite improves with increasing DDA dosage at pH 5.5 to 10.5. In the same pH range, diatomite has weaker flotability than albite, particularly in alkaline pH pulp. Zeta potential measurements indicate that diatomite has a higher negative surface charge than albite at pH 7 to 12, DDA interacts strongly with albite and weakly with diatomite. Thus, DDA preferentially absorbs on albite surface rather than diatomite under alkaline conditions. Fourier transform infrared spectra (FTIR) indicate that the amount of DDA adsorbed to albite is greater than that adsorbed to diatomite, under the same conditions. The adsorption of DDA on the surface of diatomite is investigated by using atomic force microscopy (AFM) for the first time. The adsorption of the collector DDA on the surface of albite per unit area is greater than that on diatomite. This accounts for the lower recovery of diatomite than that of albite.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Christopher J. Reed ◽  
Hunter Lewis ◽  
Eric Trejo ◽  
Vern Winston ◽  
Caryn Evilia

Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1354 ◽  
Author(s):  
Claudia Conte ◽  
Giovanni Dal Poggetto ◽  
Benjamin J. Swartzwelter ◽  
Diletta Esposito ◽  
Francesca Ungaro ◽  
...  

Nanoparticles (NPs) based on amphiphilic block copolymers of polyethylene glycol (PEG) and biodegradable polyesters are of particular current interest in drug nanodelivery due to their easily manipulated properties. The interaction of these NPs with biological environments is highly influenced by shell features, which drive biological identity after administration. To widen the strategies available for tuning particle surface chemistry, here we developed a panel of amine-bearing PEGylated NPs with a poly(ε-caprolactone) (PCL) core for the delivery of lipophilic drugs, and investigated the impact of NP modifications on their interaction with abundant circulating proteins (human serum albumin—HSA—and mucin), as well as their transport through biological barriers (artificial mucus—AM, extracellular matrix—ECM). We prepared NPs based on a diamino-terminated PCL (amine-NPs) and its mixture with PEG-PCL copolymers (amine/PEG-NPs) at different PEG molecular weights by nanoprecipitation, as well as corresponding NPs of PEG-PCL (PEG-NPs). The presence of an amine-bearing polymer resulted in NPs with a net positive charge and a zeta potential dependent on the length of PEG in the copolymer. Amine/PEG-NPs had a larger fixed aqueous layer thickness as compared to PEG-NPs, suggesting that PEG conformation is affected by the presence of positive charges. In general, amine-bearing NPs promptly interacted with the dysopsonic protein HSA, due to electrostatic interactions, and lose stability, thereby undergoing time-related aggregation. On the other hand, amine/PEG-NPs interaction with mucin induced switching to a negative surface charge but did not alter the quality of the dispersion. The transport kinetics of NPs through a layer of artificial mucus and tumor extracellular matrix was studied by means of fluorescent NPs based upon FRET. Amine/PEG-NPs did not cross the ECM, but they were promptly transported through the AM, with swifter transport noted at increasing MWs of PEG in the copolymer. Finally, we demonstrated that all the different NP types developed in this study are internalized by human monocytes and, despite the positive charge, they did not induce a measurable inflammatory effect. In conclusion, we showed that the concurrent presence of both PEG and amine groups on NP surface is a promising strategy for directing their interaction with body compartments. While PEG-NPs are confirmed for their capacity to cross ECM-like compartments, amine/PEG-NPs are revealed as a powerful platform to widen the arsenal of nanotools available for overcoming mucus-covered epithelia.


2002 ◽  
Vol 48 (1) ◽  
pp. 34-42 ◽  
Author(s):  
C Gusils ◽  
S Cuozzo ◽  
F Sesma ◽  
S González

The microbial adhesion process includes passive forces; electrostatic interactions; hydrophobic, steric forces; lipoteichoic acids; and specific structures, such as external appendages (lectins) and (or) extracellular polymers. In a previous work, we showed that Lactobacillus animalis, L. fermentum, and L. fermentum ssp. cellobiosus had lectinlike proteic structures on their surfaces and high hydrophobicity values on the cell surface of L. fermentum ssp. cellobiosus. Here, we examined the presence of the bacterial forces or structures that could be involved in the interaction between bacteria and epithelial cells. Lactobacillus animalis and L. fermentum possessed a net negative surface charge, whereas L. fermentum ssp. cellobiosus showed similar affinity to both cationic and anionic exchange resins, aggregated in the presence of ammonium sulfate, and had high affinity (75.4%) to a hydrophobic matrix. Only L. animalis was shown to have ribitol teichoic acids in the cell wall. The amount of polysaccharides from cell walls varied between different strains, with L. fermentum ssp. cellobiosus having the highest concentration. Lectin extracts obtained from lactobacilli did not possess sugar residues, thereby demonstrating the proteic nature of the superficial surface structures of three strains. The lactic acid bacteria studied here showed different surface determinants, which could be involved in the interactions between these lactobacilli and intestinal epithelial cells.Key words: adhesion, lactobacilli, probiotics, chickens.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanbo Yang ◽  
Miriam Park ◽  
Masashi Maekawa ◽  
Gregory D. Fairn

Abstract The generation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) is essential for many functions including control of the cytoskeleton, signal transduction, and endocytosis. Due to its presence in the plasma membrane and anionic charge, PtdIns(4,5)P2, together with phosphatidylserine, provide the inner leaflet of the plasma membrane with a negative surface charge. This negative charge helps to define the identity of the plasma membrane, as it serves to recruit or regulate a multitude of peripheral and membrane proteins that contain polybasic domains or patches. Here, we determine that the phosphatidylinositol 4-phosphate 5-kinase homolog (PIPKH) alters the subcellular distribution of PtdIns(4,5)P2 by re-localizing the three PIP5Ks to endomembranes. We find a redistribution of the PIP5K family members to endomembrane structures upon PIPKH overexpression that is accompanied by accumulation of PtdIns(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3). PIP5Ks are targeted to membranes in part due to electrostatic interactions; however, the interaction between PIPKH and PIP5K is maintained following hydrolysis of PtdIns(4,5)P2. Expression of PIPKH did not impair bulk endocytosis as monitored by FM4-64 uptake but did result in clustering of FM4-64 positive endosomes. Finally, we demonstrate that accumulation of polyphosphoinositides increases the negative surface charge of endosomes and in turn, leads to relocalization of surface charge probes as well as the polycationic proteins K-Ras and Rac1.


2004 ◽  
Author(s):  
Scott M. Davidson ◽  
Theresa S. Mayer ◽  
Kendra V. Sharp

Nanowires, literally wires with nanometer-scale diameters and lengths of several microns up to tens of microns, have recently garnered significant attention given their potential applications within the fields of electronics and sensing [1], among others. Nanowires can be fabricated from a diverse set of materials including metals and semiconductors, and functionalized or tailored for a range of applications (e.g. detection of specific biological or chemical species [2]). One of the key issues for integration of nanowires into electronic or sensing devices is the controlled separation, delivery, and placement of nanowires with a high degree of accuracy. Electrokinetic control of the motion of gold nanowires with both negligible and negative surface charge is demonstrated inside of fluid-filled glass microchannels. The electroosmotic and electrophoretic velocities of the nanowires are measured and compared to theoretical predictions for cylindrical particles in suspension.


1970 ◽  
Vol 23 (02) ◽  
pp. 261-275 ◽  
Author(s):  
G Zbinden ◽  
J. N Mehrishi ◽  
S Tomlin

SummaryThe severity of platelet damage induced by hyper- and hypotonic NaCl solutions and freezing and thawing was assessed by microscopic evaluation and measuring inhibition of 5-HT uptake. The same techniques were used to quantitate the effects of aggregating agents. The positively charged macromolecules PS, Poly-L und Poly-O reduced the net negative surface charge as determined by microelectrophoresis, caused platelet aggregation and inhibited 5-HT uptake. The damaging effects of Poly-L and Poly-O were more severe and more closely related to concentration than that of PS. The negatively charged macromolecules Poly-IC and NaPS increased the anodic electrophoretic mobility. Poly-IC and heparin caused a low degree of platelet clumping and no inhibition of 5-HT uptake. NaPS produced severe platelet damage with extensive clumping and complete inhibition of 5-HT uptake. Na laurate had the same effect, but did not alter electrophoretic mobility. ADP caused concentration-dependent platelet aggregation and inhibition of 5-HT uptake. The effects of ADP and NaPS were compared in agitated and non-agitated platelet samples containing identical concentrations of the 2 compounds. Agitation was found to increase the degree of platelet clumping and to reduce 5-HT uptake.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 309-316 ◽  
Author(s):  
X. S. Jia ◽  
Herbert H. P. Fang ◽  
H. Furumai

Changes of surface charge and extracellular polymer (ECP) content were investigated in batch experiments for three anaerobic sludges, each of which had been enriched at 35°C and pH 639-7.3 for more than 40 batches using propionate, butyrate and glucose, individually, as the sole substrate. Results showed that both ECP and the negative surface charge were dependent on the growth phase of microorganisms. They increased at the beginning of all batches when the microorganisms were in the prolific-growth phase, having high substrate concentration and food-to-microorganisms ratio. Both later gradually returned to their initial levels when the microorganisms were in the declined-growth phase, as the substrate became depleted. The negative surface charge increased linearly with the total-ECP content in all series with slopes of 0.0187, 0.0212 and 0.0157 meq/mg-total-ECP for sludge degrading propionate, butyrate and glucose, respectively. The change of surface charge for the first two sludges was mainly due to the increase of proteinaceous fraction of ECP; but, for glucose-degrading sludge, that could be due to the increases of both proteinaceous and carbohydrate fractions of ECP. The negative-charged nature of anaerobic sludge implies that cations should be able to promote granulation of anaerobic sludge.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 45
Author(s):  
Eduardo Guzmán ◽  
Laura Fernández-Peña ◽  
Lorenzo Rossi ◽  
Mathieu Bouvier ◽  
Francisco Ortega ◽  
...  

This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.


Sign in / Sign up

Export Citation Format

Share Document