scholarly journals Impact of different tillage management on soil and grain quality in the Anatolian paddy rice production

2018 ◽  
Vol 64 (No. 7) ◽  
pp. 303-309
Author(s):  
Çay Anıl

The objective of this study was to examine the impact of conventional tillage (CT) and two different reduced tillage methods (RT1 and RT2) on some soil properties, grain yield and post-harvest grain quality during paddy rice production in the semi-arid Mediterranean conditions for two years. According to the results, soil bulk density was higher in CT with 1.46 and 1.47 g/cm3, respectively for both years. Ntot in RT1 was determined to be higher at a significant level with an average of 0.135%. The lowest soil organic carbon was found in the CT yearly as 2.91% and 2.50%. Penetration resistance did not exceed the limit value of 2–3 MPa in any method that may have impact on plant root growth. RT1 yielded higher results with regard to rice grain yield and provided the highest milling yield for both cultivars and years. There was no statistical difference among dry matter, thousand kernel mass and protein content values of rice grains in terms of cultivars, years and tillage factors. It can be observed in the light of short-term results that the RT1 is a good alternative for CT due to its positive impact on soil characteristics, grain yield and quality.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
John Kanburi Bidzakin ◽  
Simon C. Fialor ◽  
Dadson Awunyo-Vitor ◽  
Iddrisu Yahaya

Irrigation production is a means by which agricultural production can be increased to meet the growing food demands in the world. This study evaluated the effect of irrigation ecology on farm household technical, allocative, and economic efficiency of smallholder rice farmers. Cross-sectional data was obtained from 350 rice farmers across rain fed and irrigation ecologies. Stochastic frontier analyses are used to estimate the production efficiency and endogenous treatment effect regression model is used to estimate the impact of irrigation ecology on rice production efficiency. The impact of irrigation ecology on technical efficiency is about 0.05, which implies farmers producing under irrigation ecology are more technically efficient in their rice production than those in rain fed production. The impact of irrigation ecology on allocative efficiency is about 0.33, which shows that farmers participating in irrigation farming are more allocatively efficient in their rice production than those in rain fed production. The impact on economic efficiency is about 0.23, meaning that farmers participating in irrigation farming are more economically efficient in their rice production than those in rain fed production. Irrigation ecology has positive impact on production efficiency; hence farmers should be encouraged to produce more under irrigation for increased yield and profit.


Author(s):  
Nguyễn Trung Hải ◽  
Trần Thanh Đức ◽  
Vi Thị Linh

Nghiên cứu này nhằm đánh giá tác động của các biện pháp làm đất và mật độ trồng khác nhau đến quá trình sinh trưởng, phát triển, năng suất và hiệu quả kinh tế của giống ngô lai HQ2000 trên đất cát nội đồng trong vụ Đông Xuân năm 2018-2019 tại Thừa Thiên Huế. Thí nghiệm thứ nhất gồm 3 công thức gồm làm đất truyền thống, làm đất tối thiểu và không làm đất trong đó thí nghiệm thứ hai gồm 4 công thức với mật độ gieo trồng lần lượt là 47.058, 53.333, 61.538 và 66.666 cây/ha. Kết quả thí nghiệm cho thấy: Thời gian hoàn thành các giai đoạn sinh trưởng và phát triển ở các biện pháp làm đất tối thiểu có xu hướng ngắn hơn các công thức làm đất truyền thống; chiều cao cây cuối cùng dao động từ 154 đến 175cm, số lá dao động từ 16 đến 18 lá, diện tích lá đóng bắp có xu hướng giảm ở các công thức làm đất tối thiểu trong khi các yếu tố khác như chiều cao đóng bắp, chiều dài bắp, đường kính bắp và đường kính lóng gốc ở các công thức thí nghiệm dao động tương đối ít. Năng suất lý thuyết dao động từ 61 đến 72 tạ/ha, năng suất thực thu đạt cao nhất là 59,8 tạ/ha ở công thức không làm đất. Đối với biện pháp canh tác truyền thống, năng suất đạt cao nhất ở mật độ 18,5 kg hạt giống/ha (63,4 tạ/ha). Ở các công thức thí nghiệm, lợi nhuận đạt cao nhất ở công thức không làm đất và ở mật độ trồng là 18,5 kg hạt giống/ha, tương đương 61.538 cây/ha.  ABSTRACT This study aims to evaluate the impact of different tillage methods and planting densities on the growth, development, grain yield and economic efficiency of hybrid maize HQ2000 on sandy soil in the 2018-2019 Winter-Spring season in Thua Thien Hue province. The first trial consisted of three treatments including conventional tillage, limited tillage and no tillage; the second trial consisted of four treatments with planting density of 47.058, 53.333, 61.538 và 66.666 plants/ha, respectively. Experimental results showed that: The completed time of the growth and development stages at the minimum tillage methods was shorter than conventional tillage treatments; final plant height varied from 154 to 175cm, the number of leaves ranged from 16 to 18 leaves, the leaf area at ​​corn position decreased in minimum tillage treatments while other factors such as ear height, ear length, ear diameter and stalk diameter at prop root position fluctuated slightly. Potential grain yield varied from 6.1 to 7.2 tons/ha, the highest actual grain yield was 5.98 tons/ha in the no-tillage treatment. For conventional tillage, the highest grain yield was at 18.5 kg seed/ha treatment (6.34 tons/ha). In the experimental treatments, the highest profit was achieved in the no-tillage treatment and in planting density of 18.5 kg seed/ha, equivalent 61,538 plants/ha.      


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 120-123 ◽  
Author(s):  
Roy J. Smith

Yields of drill-seeded paddy rice (Oryza sativaL. ‘Lebonnet’) at optimum stands of 215 to 270 plants/m2at Stuttgart, Arkansas, were reduced 9, 18, 20, and 36% by bearded sprangletop [Leptochloa fascicularis(Lam.) Gray] densities of 11, 22, 54, and 108 plants/m2, respectively. There was a linear decrease in rice grain yield of 21 kg/ha for each bearded sprangletop plant per square meter. Weed densities of 54 and 108 plants/m2reduced head-rice yields (whole milled kernels) and a density of 108 plants/m2reduced germination of rice seed. The number of bearded sprangletop panicles produced per weed plant decreased as the weed density increased.


Agriculture ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 167 ◽  
Author(s):  
Kifayatullah Kakar ◽  
Tran Dang Xuan ◽  
Saidajan Abdiani ◽  
Imran Khan Wafa ◽  
Zubair Noori ◽  
...  

Rice is an important staple food for Afghans. Its production has been increased, and attention is needed to improve grain quality. Experiments were conducted to evaluate the growth, yield, physicochemical properties, antioxidant activity, and morphological structures of four exotic rice varieties widely grown in Afghanistan (Attai-1, Jalalabad-14, Shishambagh-14, and Zodrass). Antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), of rice grain were determined. A scanning electron microscopic observation was conducted on the cross-cut section of dehulled rice grains. The results showed a wide variation among four rice varieties for growth, grain yield, physicochemical properties, antioxidant activities, and morphology. Tiller and panicle number per hill, 1000-grain weight, grain yield, and antioxidant activities were found to be highest in Jalalabad-14. Attai-1 showed lower amylose, protein, and lipid contents with a high number of perfect grains, consequently enhanced taste point (score of quality). Grain yield, protein, and amylose contents showed a negative correlation with antioxidant activities. Accumulated structures in Attai-1, Shishambagh-14, and Zodrass were normal; however, Jalalabad-14 increased protein bodies and its traces in the amyloplasts. Information on yield potential, grain quality, and nutritional value of these exotic rice varieties may useful for sustainable food provision and nutritional improvement of rice in Afghanistan.


Author(s):  
Engku Hasmah Engku Abdullah ◽  
Azizah Misran ◽  
Muhammad Nazmin Yaapar ◽  
Mohd Rafii Yusop ◽  
Asfaliza Ramli

Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Gao ◽  
Shaowu Hu ◽  
Liquan Jing ◽  
Yunxia Wang ◽  
Jianguo Zhu ◽  
...  

Evaluating the impact of increasing CO2 on rice quality is becoming a global concern. However, whether adjusting the source-sink ratio will affect the response of rice grain quality to elevated CO2 concentrations remains unknown. In 2016–2018, we conducted a free-air CO2 enrichment experiment using a popular japonica cultivar grown at ambient and elevated CO2 levels (eCO2, increased by 200 ppm), reducing the source-sink ratio via cutting leaves (LC) at the heading stage, to investigate the effects of eCO2 and LC and their interactions on rice processing, appearance, nutrition, and eating quality. Averaged across 3 years, eCO2 significantly decreased brown rice percentage (−0.5%), milled rice percentage (−2.1%), and head rice percentage (−4.2%) but increased chalky grain percentage (+ 22.3%) and chalkiness degree (+ 26.3%). Markedly, eCO2 increased peak viscosity (+ 2.9%) and minimum viscosity (+ 3.8%) but decreased setback (−96.1%) of powder rice and increased the appearance (+ 4.5%), stickiness (+ 3.5%) and balance degree (+ 4.8%) of cooked rice, while decreasing the hardness (−6.7%), resulting in better palatability (+ 4.0%). Further, eCO2 significantly decreased the concentrations of protein, Ca, S, and Cu by 5.3, 4.7, 2.2, and 9.6%, respectively, but increased K concentration by 3.9%. Responses of nutritional quality in different grain positions (brown and milled rice) to eCO2 showed the same trend. Compared with control treatment, LC significantly increased chalky grain percentage, chalkiness degree, protein concentration, mineral element levels (except for B and Mn), and phytic acid concentration. Our results indicate that eCO2 reduced rice processing suitability, appearance, and nutritional quality but improved the eating quality. Rice quality varied significantly among years; however, few CO2 by year, CO2 by LC, or CO2 by grain position interactions were detected, indicating that the effects of eCO2 on rice quality varied little with the growing seasons, the decrease in the source-sink ratios or the different grain positions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaopeng Gao ◽  
Cynthia A. Grant

Field experiments were conducted at two locations in Manitoba, Canada, to determine the effect of crop rotation, phosphorus (P) fertilization and tillage on grain yield and grain concentrations of Cd and Zn in durum wheat (Triticum durumL.). Compared to conventional tillage (CT), reduced tillage (RT) management decreased grain Cd and increased grain yield and grain Zn in half of the site-years. The type of preceding crops of spring wheat-flax or canola-flax had little influence. Rate and timing of P application had little effect on grain Cd, but increasing P rate tended to decrease grain Zn. No interactive effect was detected among tested factors. Grain Zn was not related to grain Cd, but positively to other nutrients such as Fe, Mn, P, Ca, K, and Mg. Both grain Zn and Fe correlated positively with grain protein content, suggesting protein may represent a sink for micronutrients. The study suggested that the tillage management may have beneficial effects on both grain yield and quality. Phosphorus fertilizer can remain available for subsequent crops and high annual inputs in the crop sequence may decrease crop grain Zn. Understanding the environment is important in determining the impact of agricultural management on agronomic and nutrient traits.


2016 ◽  
Vol 46 (1) ◽  
pp. 72-79
Author(s):  
Veneraldo Pinheiro ◽  
Adriano Stephan Nascente ◽  
Luis Fernando Stone ◽  
Mabio Chrisley Lacerda

ABSTRACT Water availability for cultivation of irrigated rice (Oryza sativa L.) is decreasing worldwide. Therefore, new technologies are needed to grow rice under aerobic conditions, in order to produce rice grains without yield losses and with lower water consumption. This study aimed at determining the best combination of management options for producing upland rice. A randomized blocks design, in a factorial scheme, was used. The treatments consisted of a combination of five rice cultivars (BRS Caçula, BRS Serra Dourada, BRS Primavera, BRS Sertaneja and BRS Esmeralda) with two compaction pressures in the seed furrow (25 kPa or 126 kPa), two types of seed treatment (with or without pesticide) and two types of N management (all at sowing or all at topdressing). Applying N at sowing instead of at topdressing produced higher grain yield in the no-tillage system (NTS). Under this system, upland rice genotypes show higher grain yield with higher compaction pressure. Seed treatment with pesticide provided greater grain yield for the BRS Sertaneja, in NTS, and for all genotypes in the conventional tillage system (CTS). BRS Esmeralda, in NTS, and BRS Esmeralda and BRS Primavera, in CTS, were the most productive genotypes. Moreover, in NTS, the application of N at sowing and the compaction pressure on the seed furrow are important for increasing upland rice grain yield. In CTS, seed treatment is important to improve upland rice grain yield.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chunchao Wang ◽  
Kai Chen ◽  
Congcong Shen ◽  
...  

Abstract Background Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. Results Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. Conclusions Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


Sign in / Sign up

Export Citation Format

Share Document