scholarly journals Antioxidant and antihypertensive protein hydrolysates in fish products – a review

2018 ◽  
Vol 36 (No. 3) ◽  
pp. 195-207 ◽  
Author(s):  
Klaudia Korczek ◽  
Joanna Tkaczewska ◽  
Władysław Migdał

Fish proteins are a good source of bioactive peptides (BAPs). Such BAPs are derived through enzymatic hydrolysis of food proteins and can potentially by applied as health-promoting factors against chronic non-communicable diseases (NCDs), including arterial hypertension, cardiovascular disease and obesity. Antihypertensive and antioxidant BAPs derived from fish could represent a good alternative to synthetic drugs. This article reviews the literature on BAPs derived from fish and fish products, with an emphasis on antihypertensive and antioxidant properties and the impact of technological processes on the activity of BAPs. The review shows that BAPs isolated from fish exhibit quite good stability when applied under moderate physical conditions and after simulated in vitro digestion. Processing can increase the susceptibility of peptides to digestion in the digestive tract as well as improving absorption and immune system responses. Therefore, it is important to determine the optimal conditions under which proteins (and peptides) can be processed in order to maintain their bioactivity. Future research efforts on BAPs should be directed towards an elucidation of their activity after technological processes.

2020 ◽  
Vol 10 (11) ◽  
pp. 3668 ◽  
Author(s):  
Justyna Bochnak-Niedźwiecka ◽  
Michał Świeca

This study evaluates nutrients and health-promoting compounds responsible for antioxidant capacity in eight novel formulations based on lyophilized fruit and vegetable powders. The composition contained lyophilized carrot, pumpkin, lentil sprouts, raspberry, strawberry, and apple. The effect of functional additives on the antioxidant, nutritional, and functional characteristics of powdered beverages was determined in the powders and after rehydration followed by in vitro digestion. The antioxidant activity, phenols, vitamin C, and reducing power were significantly higher in the powders enriched with additives having potential functional properties. Furthermore, the analyses indicated that all the powdered formulations may be potential sources of total starch (100–112 mg/100 mL) and proteins (125–139 mg/100 mL). The designed powdered beverages after reconstitution exhibited high antioxidant content, reasonable consumer acceptance, and good in vitro bioaccessibility. The best results of antioxidant capacity were obtained for beverages enriched with raspberry, i.e., 10.4 mg Trolox equivalent (TE)/100 mL and 12.1 mg TE/100 mL rehydrated at 20 °C and 80 °C, respectively. Additionally, color characteristics were used as indicators of the quality of the powdered beverages. This research promotes the reduction of food waste, since whole plant tissues are used, thus allowing maximum exploitation of food raw materials; moreover, drying provides stable shelf life.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1023
Author(s):  
Alice Cattivelli ◽  
Angela Conte ◽  
Serena Martini ◽  
Davide Tagliazucchi

The impact of domestic cooking (baking, boiling, frying and grilling) and in vitro digestion on the stability and release of phenolic compounds from yellow-skinned (YSO) and red-skinned onions (RSO) have been evaluated. The mass spectrometry identification pointed out flavonols as the most representative phenolic class, led by quercetin-derivatives. RSO contained almost the double amount of phenolic compounds respect to YSO (50.12 and 27.42 mg/100 g, respectively). Baking, grilling and primarily frying resulted in an increased amount of total phenolic compounds, especially quercetin-derivatives, in both the onion varieties. Some treatments promoted the degradation of quercetin-3-O-hexoside-4′-O-hexoside, the main compound present in both the onion varieties, leading to the occurrence of quercetin-4′-O-hexoside and protocatechuic acid-4-O-hexoside. After in vitro digestion, the bioaccessibility index for total phenolic compounds ranged between 42.6% and 65.5% in grilled and baked YSO, respectively, and between 39.8% and 80.2% in boiled and baked RSO, respectively. Baking contributed to the highest amount of bioaccessible phenolic compounds for both the onion varieties after in vitro digestion. An in-depth design of the cooking process may be of paramount importance in modulating the gastro-intestinal release of onion phenolic compounds.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3179 ◽  
Author(s):  
Tiziana Filardi ◽  
Rosaria Varì ◽  
Elisabetta Ferretti ◽  
Alessandra Zicari ◽  
Susanna Morano ◽  
...  

Curcumin, the main polyphenol contained in turmeric root (Curcuma longa), has played a significant role in medicine for centuries. The growing interest in plant-derived substances has led to increased consumption of them also in pregnancy. The pleiotropic and multi-targeting actions of curcumin have made it very attractive as a health-promoting compound. In spite of the beneficial effects observed in various chronic diseases in humans, limited and fragmentary information is currently available about curcumin’s effects on pregnancy and pregnancy-related complications. It is known that immune-metabolic alterations occurring during pregnancy have consequences on both maternal and fetal tissues, leading to short- and long-term complications. The reported anti-inflammatory, antioxidant, antitoxicant, neuroprotective, immunomodulatory, antiapoptotic, antiangiogenic, anti-hypertensive, and antidiabetic properties of curcumin appear to be encouraging, not only for the management of pregnancy-related disorders, including gestational diabetes mellitus (GDM), preeclampsia (PE), depression, preterm birth, and fetal growth disorders but also to contrast damage induced by natural and chemical toxic agents. The current review summarizes the latest data, mostly obtained from animal models and in vitro studies, on the impact of curcumin on the molecular mechanisms involved in pregnancy pathophysiology, with the aim to shed light on the possible beneficial and/or adverse effects of curcumin on pregnancy outcomes.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ao Li ◽  
Aixia Zhu ◽  
Di Kong ◽  
Chunwei Wang ◽  
Shiping Liu ◽  
...  

For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.


2016 ◽  
Vol 96 (5) ◽  
pp. 657-676 ◽  
Author(s):  
Davide Tagliazucchi ◽  
Ahmed Helal ◽  
Elena Verzelloni ◽  
Angela Conte

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1836-1836
Author(s):  
Magalie Sabatier ◽  
Joeska Husny ◽  
Marine Nicolas ◽  
Stèphane Dubascoux ◽  
Mary Bodis ◽  
...  

Abstract Objectives The two objectives were 1) to evaluate the solubility of two iron casein complexes (ICCs) under a condition mimicking gastric pH, 2) to evaluate the impact of ascorbic acid (AA) on the in vitro iron absorption of ICCs after incorporation in reconstituted whole milk powder. Methods The in vitro solubility was determined over time after addition of diluted HCl (pH 1.7), ultracentrifugation and measurement of iron appearing in the supernatant by ICP-OES (n = 2). The impact of AA on iron uptake from the Fe compounds in reconstituted milk was determined using the in vitro digestion coupled with the Caco-2 cell model and the measurement of ferritin/total protein produced by the cells (n = 3). The molar ratio of AA to iron of 2 to 1 recommended by the WHO for iron absorption optimization has been tested with an iron level corresponding to 3.3 mg Fe/serving of milk. Ferrous sulfate (FeSO4), the reference compound for iron bioavailability and micronized ferric pyrophosphate (FePP), main salt used for milk fortification were used as references. Results The dissolution test showed a rapid solubilization of iron from the ICCs i.e., >75 ± 19.3% at 5 min and >89 ± 0.3% at 90 min. The kinetics of soluble iron from the complexes were like that from FeSO4. The solubility of FePP was only 37.6 ± 4.7% at 90 min. Without AA, the iron uptake from FeSO4 was lower than expected translating into a relative in vitro bioavailability (iRBA) of FePP and of the two ICCs to FeSO4 of 66, 169 and 215%. This might be explained by a rapid conversion of soluble iron from FeSO4 into Fe3+ and insoluble iron hydroxide when the pH increased from 2 to >7 during in vitro digestion. However, with the addition of AA in the milk, iron uptake by the cells was found to be increased to levels of 341.8 ± 8.9, 124 ± 12.2, 403.1 ± 117.8 and 362.9 ± 36.9 ng ferritin/mg protein for FeSO4, FePP and the two ICCs respectively. This translates into iRBAs to FeSO4 of 36% for FePP and of 118 and 106% for the two ICCs. Conclusions The solubility and the demonstrated impact of AA on Fe uptake suggest that ICCs are absorbed to a similar amount as FeSO4 and thus provide an excellent source of Fe. Funding Sources Société des Produits Nestlé, NPTC Konolfingen, Switzerland.


2011 ◽  
Vol 101 (8) ◽  
pp. 929-934 ◽  
Author(s):  
Nadia Ponts ◽  
Laetitia Pinson-Gadais ◽  
Anne-Laure Boutigny ◽  
Christian Barreau ◽  
Florence Richard-Forget

The impact of five phenolic acids (ferulic, coumaric, caffeic, syringic, and p-hydroxybenzoic acids) on fungal growth and type B trichothecene production by four strains of Fusarium graminearum was investigated. All five phenolic acids inhibited growth but the degree of inhibition varied between strains. Our results suggested that the more lipophilic phenolic acids are, the higher is the effect they have on growth. Toxin accumulation in phenolic acid-supplemented liquid glucose, yeast extract, and peptone cultures was enhanced in the presence of ferulic and coumaric acids but was reduced in the presence of p-hydroxybenzoic acid. This modulation was shown to correlate with a regulation of TRI5 transcription. In this study, addition of phenolic acids with greater antioxidant properties resulted in a higher toxin accumulation, indicating that the modulation of toxin accumulation may be linked to the antioxidant properties of the phenolic acids. These data suggest that, in planta, different compositions in phenolic acids of kernels from various cultivars may reflect different degrees of sensitivity to “mycotoxinogenesis.”


Author(s):  
Hany M. El-bassossy ◽  
Nora Desoky ◽  
Abdulrahman M Alahdal ◽  
Ahmed Fahmy

Objective: Diabetes is a disease whose complications have serious implications for the health of sufferers; one of the most serious such complications is the deterioration of vascular reactivity. Apigenin is a natural flavonoid with PKC inhibiting and antioxidant properties. In this study, the impact of apigenin on vascular reactivity deterioration was investigated.Methods: Insulin resistance (IR) and insulin deficiency (ID) were induced by fructose and streptozotocin respectively. The isolated aortae vasoconstriction response to phenylephrine (PE) and potassium chloride (KCl) in addition to the vasodilation response to acetylcholine (ACh) and sodium nitroprusside (SNP) were tested.Results: IR and ID were associated with significantly exaggerated vasoconstriction to KCl and PE while significantly impaired vasodilation to ACh. Response to SNP was not significantly affected by both IR and ID. In vitro incubation with apigenin (7 7µM) for 20 min restored normal responses to PE, KCl and ACh in aortae isolated from insulin-resistant or insulin-deficient rats. Incubation for one hour with the PKC stimulant, phorbol 12-myristate 13-acetate (PMA, 800 nM) resulted in aortic impairment similar to that seen in aortae isolated from IR and ID animals. Incubation with both apigenin prevented PMA-induced exaggerated vasoconstriction response to both PE and KCl.Conclusion: Apigenin alleviates vascular exaggerated vasoconstriction and impaired dilation associated with diabetes or PKC activated.


2016 ◽  
Vol 4 (3) ◽  
pp. 35-49 ◽  
Author(s):  
Sally Dunlop ◽  
Becky Freeman ◽  
Sandra C. Jones

The near-ubiquitous use of social media among adolescents and young adults creates opportunities for both corporate brands and health promotion agencies to target and engage with young audiences in unprecedented ways. Traditional media is known to have both a positive and negative influence on youth health behaviours, but the impact of social media is less well understood. This paper first summarises current evidence around adolescents’ exposure to the promotion and marketing of unhealthy products such as energy dense and nutrient poor food and beverages, alcohol, and tobacco on social media sites such as Facebook, Twitter, Instagram and YouTube. We explore emerging evidence about the extent of exposure to marketing of these harmful products through social media platforms and potential impacts of exposure on adolescent health. Secondly, we present examples of health-promoting social media campaigns aimed at youth, with the purpose of describing innovative campaigns and highlighting lessons learned for creating effective social media interventions. Finally, we suggest implications for policy and practice, and identify knowledge gaps and opportunities for future research.


Sign in / Sign up

Export Citation Format

Share Document