scholarly journals Assessment of plant biological diversity and soil characteristics in the pure ash tree stand and in mixture with beech (a case study of Lavij-Noor, Iran)

2017 ◽  
Vol 63 (No. 10) ◽  
pp. 443-448 ◽  
Author(s):  
Pourmajidian Mohammad Reza ◽  
Kavian Hossein

The present study has been done to evaluate the impact of pure ash stand and mixed stand with beech on the herb layer biodiversity and soil properties in the forests of Noor city. There is a unique stand of ash in the forests of Noor city and at 1,900–2,100 m a.s.l., which is rarely seen like that in the northern forests of Iran. Shannon-Wiener diversity indices (H’), Simpson index of dominance (D), Margalef richness (R<sub>1</sub>) and Pielou’s evenness were used to analyse biodiversity. Sampling was also conducted to investigate physical and chemical properties of soil (bulk density, acidity, electrical conductivity, soil moisture, soil lime, nitrogen and organic carbon) in each sample plot and at two depths (10 and 20 cm). The total number of 26 soil samples (13 soil samples at either depth) in pure ash stand and 24 soil samples (12 soil samples at either depth) from this type of stand mixed with beech were taken. The results of plant species biodiversity showed that between the pure ash stand and the stand mixed with beech there is a significant difference at the 99% probability level in Shannon-Wiener diversity, Margalef richness, and Simpson dominance. There is also a significant difference at the 95% probability level between the two stands under study in Pielou’s evenness index. The results of soil factors also showed that at the depth of 10–20 cm acidity factor showed a significant difference from its adjacent stand at the 99% probability level. There is also a significant difference at the 99% probability level in acidity (0–10 cm) and soil moisture at the depth of 10–20 cm between the two areas, but there is not any significant difference between the areas under study in electrical conductivity and lime factors at the two depths and also in moisture content at the depth of 0–10 cm. It should be noted that between the stand and soil nitrogen, organic carbon and bulk density parameters at both depths (0–10 and 10–20 cm) a significant difference at the 95% confidence level is shown.

Author(s):  
Kenea Worku ◽  
Abdissa Debela ◽  
Diriba Shanko

The study of soil physico-chemical properties were made on the soils of BuleHoraWoreda, WestGuji zone. The objective of the study was to characterize soil physical and chemical properties to assess the fertility status of the soils in the study areas. Soil profile pits at representative sites were described and soil samples were collected from each depth of 0-15 cm, 15 – 30 cm, and 30–60 cm depending on the root depth of the crop. Soil samples were collected from two different study areas for the determination of soil texture, bulk density, porosity, soil pH and electrical conductivity. The top layer (0-15 cm) has an average bulk density of 1.10 g/cm3, whereas the subsurface layer (15-30 and the bottom layer (30-60 cm) has an average bulk density of 1.16 g/cm3 and 1.26 g/cm3, respectively at the GuyyeKebele. The average value of bulk density 1.18 g/cm3, 1.29 g/cm3 and 1.39g/cm3 was recorded on the surface horizon (0-15 cm), subsurface horizon (15-30 cm) and the bottom horizon (30 - 60 cm) depth, respectively at BuleHora Farm. Accordingly, the highest (1.39 g/cm3) and the lowest (1.10 g/cm3) average bulk density values were recorded for BuleHoraand GuyyeKebele study Farm, respectively. The average highest porosity (58.48%) value was observed in the surface horizon (0 -15 cm) soil depth and the average lowest porosity value (52.11%) was observed in the bottom horizon (30 – 60 cm) depth at GuyyeKebele study Farm. The average porosity value of the soils in BuleHora study Farm were recorded 55.27%, 52.39% and 47.63% for the surface horizon (0 -15 cm), sub surface horizon ( 15 –30 cm) and bottom horizon (30 – 60 cm) depth , respectively. The soil textural class was changed with depth from sandy clay in surface horizon (0-15 cm) to clay in both sub surface horizon (15- 30 cm) and bottom horizon (30-60 cm) at GuyyeKebele. The pH value was observed on the soils of the GuyyeKebele study area increased from 6.08 at surface horizon (0 – 15 cm) to 6.27 at the sub surface horizon (15- 30 cm) and then slightly decreased to 6.21 at the bottom horizon (30-60 cm) of the soil depth. Lowest soil pH value (5.44) was measured in the surface horizon (0 –15 cm) and the highest pH value (6.09) was observed in bottom horizon (30-60 cm) soil depth at BuleHora farm. The electrical conductivity of the saturated soil paste extracts of the study area was low (ranging from 0.0387 to 0.1587 dS m-1) throughout the profile showing no significant accumulation of soluble salts to convert the soil to saline soil.Int. J. Agril. Res. Innov. & Tech. 7 (2): 43-48, December, 2017


Author(s):  
Prashant Joshi ◽  
Dhiraj Kadam ◽  
Shakti Tayde ◽  
Yogesh Dharmik

The present investigation was carried out to characterize and classify some typical healthy and declined Nagpur mandarin gardens in Warud and Morshi Tahsil’s of Amravati District (M.S.). Total forty two representative surface and depth soil samples from healthy and declined Nagpur mandarin gardens were collected and analyzed for various physico-chemical properties. The findings revealed that the texture of soil is clayey (40 - 59 % clay in healthy gardens and 47.4 - 61.4 % clay in declined gardens). The bulk density and porosity in healthy gardens ranged 1.51 - 1.67 mg.m-3, 35.85 - 43.02 % in declined gardens; it varied from 1.51 to 1.66 mg.m-3 and 25.85 to 43.02 % respectively. The pH, organic carbon and CaCO3 content in healthy gardens soils varies 7.5 - 8.0, 4.8 - 9.0 g kg-1, 5.35 - 8.31 % and in declined gardens it’s 7.7 - 8.2, 1.95 - 3.75 gm kg-1, 6.71 - 10.53 % respectively. The electrical conductivity and cation exchange capacity of healthy gardens soil was noticed 0.21 - 0.28 d.Sm-1, 45.92 - 55.53 c.mol (p+) kg ha-1 and in declined gardens it varied 0.22 - 0.32 d.Sm-1, 46.20 - 51.92 c.mol (p+) kg ha-1 respectively. Further, no significant difference was found in clay, bulk density, porosity, electrical conductivity and cation exchange capacity in healthy and declined gardens; however soil reaction was found high in declined gardens than healthy gardens. Organic carbon content was high and free lime content was reported lower in healthy gardens than declined gardens. Study on depth wise distribution showed that bulk density, pH and electrical conductivity increase with soil depth. Organic carbon and cation exchange capacity decreases with soil depth. The available nitrogen, phosphorus and potassium content of healthy gardens surface soils are ranged 206.0 - 273.7 kg ha-1, 25.0 - 38.3 kg ha-1, 324 - 672 kg ha-1 and in declined gardens it’s varied as 135.4 - 206.8 kg ha-1, 19.8 - 23.3 kg ha-1, 364 - 750.4 kg ha-1 respectively. Available nitrogen and phosphorus content in healthy gardens found more supporting than declined ones. Depth wise distribution showed that available nitrogen and phosphorus showed decreasing trend with the soil depth.


Author(s):  
Saif A. Al-Khamisi ◽  
Malik Al-Wardy ◽  
Mushtaque Ahmed ◽  
Sanmugam A. Prathapar

Field studies were conducted at Agriculture Research Center, Oman during the year 2010/2011 to monitor the impact of reclaimed water irrigation on soil physical and chemical properties after wheat, cowpea and maize cultivation (in rotation). Three different water sources (Groundwater (GW), desalinized water (DW), and Reclaimed Water (RW)) were used as the treatments in Randomized Completely Block Design (RCBD) with 3 blocks (replicates). Samples were taken from four depths (30, 45, 60 and 90 cm) after harvesting time of the three crops. Soil salinity (ECe) in all soil depths decreased with time. Organic carbon did not show significant difference between harvest timings of wheat and cowpea. Organic carbon increased with time in soil irrigated with reclaimed water. The saturated hydraulic conductivity of the soil, Ksat didn’t show significant difference among the water types and their interaction with soil depths. Total nitrogen was the highest after cowpea harvest in reclaimed water irrigation. The soil phosphorus and potassium were not affected by any of the three water irrigation types. The highest concentrations of phosphorus and potassium were found to be in the upper soil layers. Overall, no adverse impacts of reclaimed water irrigation were observed after growing three crops of rotation. 


2019 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Imam Khoirudin

This result aims to determine the impact of land fires on chemicals soil. Forest fire data Obtained in the region of Research and Edication Forest Bukit Soeharto Mulawarman University (HPPBS UNMUL). The method was used on research are descriptive and comparative by comparing the result of soil chemicals properties analysis of burn and unburned lands. The soil chemistry properties of this result is pH, Organic Carbon, Nitrogen, Phosphor and Potassium. Soil sampling was random system on this methods. Soil samples be distinguished by type and depth of soil sampling. The results of the soil analysis chemical properties then was compared based on assessment of soil chemical properties which refers to the assessment criteria soil chemical properties developed by Soil Research Institute Bogor, 2005. The results showed the fires occurring after 1 year influence of soil chemicals properties such as pH, Organic Carbon, Nitrogen, Phosphor and Potassium.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


2016 ◽  
Vol 13 (1) ◽  
pp. 1-6
Author(s):  
Baghdad Science Journal

Soil invertebrates community an important role as part of essential food chain and responsible for the decomposition in the soil, helps soil aeration , nutrients recycling and increase agricultural production by providing the essential elements necessary for photosynthesis and energy flow in ecosystems.The aim of the present study was to investigate the soil invertebrates community in one of the date palms plantation in Aljaderia district South of Baghdad, , and their relationships with some physical and chemical properties of the soil , as Five randomly distributed replicates of soil samples were collected monthly. Invertebrates samples were sorted from the soil with two methods, direct method to isolate large invertebrates and indirectly to isolate small invertebrates using wet funnel method. The study also included the determination of physical and chemical factors of the soil (Temperature, Salinity, pH, Organic matter, Humidity, In addition to the soil texture).Monthly fluctuations in physical and chemical characteristics of the soil and the total invertebrates community study site were determined. Significant correlations the of the invertebrates community and each of temperature, organic matter, and humidity were observed. The study revealed that the temperature of the soil ranged between 5 to 25 C0 , The salinity concentration ranged between 1.1-1.9 ‰, The pH values ranged between 7.3 to 7.8 and the percentage of soil moisture ranged between 15 - 25% , Soil samples were composed of 44.6 % Clay, 19.7% Silt and 35.5% Sand.A total of 4625 individuals of soil invertebrates belonging to 16 taxa were sorted , within which the adult and larval insects were the most abundant, and from them 1283 individuals were sorted , represented 28% of the total numbers, followed by Isopoda , which 1030 individuals of them were sorted, In addition to Nematode, Oligochaetes Annelids family Enchytraeidae, and Earthworms family Lumbricida, Species of Chilopoda, Diplopoda, mites, land snails and slugs. The highest total individual number were recorded recorded durim moderate temperature months, February, March and April amounted to 838, 801 and 813 individuals, respectively.A significant correlation was mated between total number of soil invertebrates and each of temperature, organic matter and humidity. The significant difference in means was calculated according to LSD test.


Author(s):  
Md. Rafiqul Islam ◽  
Golam Kibria Muhammad Mustafizur Rahman ◽  
Md. Abu Saleque

A laboratory experiment was conducted in Soil Science Division of Bangladesh Rice Research Institute (BRRI) during 2010-11 aimed to determine the effects of different industrial effluents on some soil chemical properties under long-term industrial wastewater irrigated rice field. Effluents irrigation created some differences in soil pH, electrical conductivity and organic carbon. The pH in all soil depth was higher with wastewater irrigated rice field. Irrigation with wastewater increased in all the effluents irrigated rice fields; the electrical conductivity (EC) was remarkable higher with  all soil depth than the control field. In all the rice fields soil (Control + effluents irrigated fields), the organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was slightly higher with wastewater irrigated rice soils. Exchangeable cations (Ca, Mg, K and Na), trace elements (Zn, Fe, Mn and Cu) and heavy metals (Pb, Cd, Cr and Ni) were increased through irrigation with wastewater in rice–rice cropping pattern.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


2012 ◽  
Vol 79 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Su-Yeon Lee ◽  
Sangryeol Ryu ◽  
Dong-Hyun Kang

ABSTRACT The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference ( P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly ( P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.


2020 ◽  
Vol 5 (2) ◽  
pp. 65-71
Author(s):  
Israt Jahan ◽  
AKM Abul Ahsan ◽  
MMR Jahangir ◽  
Mahmud Hossain ◽  
Md Anwarul Abedin

Soil physico-chemical properties are an important phenomenon for sustainable crop production and maintenance of optimum soil health. Hence, a laboratory measurement was conducted with soil samples of three years long experimental field of the Department of Soil Science, Bangladesh Agricultural University, Mymensingh to assess the changes in five selected soil physico-chemical properties viz. soil texture, bulk density, soil pH, total nitrogen and organic matter. The experiment was laid out in a split plot design with two water regimes (continuous flooding and alternate wetting & drying) in the main plots and five fertilizer treatments (N0 - control, N1- 140 kg N/ha as PU, N2- 104 kg N/ha as USG (2× 1.8 g/ 4 hills), N3 - 5 t CD + PU @ 140 kg N /ha on IPNS basis and N4- 5 t CD + USG (2× 1.8 g/ 4 hills @ 104 kg N/ha)) in the subplots under rice-rice cropping pattern with three replications. After three years, soil samples were collected at 0-5 and 5-10 cm soil depths for measuring bulk density and at 0-10 cm depth for other soil properties and analyzed. Results found that % sand, % silt, % clay, bulk density and soil pH was not changed significantly compared to initial status. Percentage of total nitrogen and organic matter was significantly affected by irrigation and fertilization. Total nitrogen (%) was higher in AWD whereas organic matter (%) was higher in CF practice. The highest total nitrogen (%) and organic matter (%) was found in N4 treatment in which USG was applied in combination with cowdung as organic manure. It can be suggested that N4 treatment was formed good combination for sustaining chemical properties of soil. Further long- term experimentation will be needed to know the changes in soil properties for sustainable crop production and improving soil health. Asian Australas. J. Biosci. Biotechnol. 2020, 5 (2), 65-71


Sign in / Sign up

Export Citation Format

Share Document