EFFECT OF MECHANICAL ANCHORAGE IN HEAT TREATED BEAMS RETROFITTED WITH CFRP

2021 ◽  
Vol 0 (15) ◽  
pp. 0-0
Author(s):  
Abdul Majeed QARIZADA ◽  
Yusuf SÜMER

Aim: Locally deformed beams and girders could be temporarily repaired by heat treatment but this practice causes the decrease in the load capacity of the member. Besides, fiber reinforced polymer strips could be used to gain a permanent retrofitting solution for the deformed elements. Method: In this study initially the behavior of heat treated IPE-80 beam strengthened by Carbon Fiber Reinforced Polymer (CFRP) strips bonded with epoxy is observed. This practice causes a significant increase in the load capacity but it is also being observed that epoxy scatters earlier, which does not allow the CFRP to resist much more load. Scaled steel IPE80 beams are selected and they are subjected to three-point bending test. Load-deflection behavior is recorded for each test and conclusions are derived by comparing the results. Conclusion: Preliminary laboratory experiments on shell plates shows that using anchorage by employing bolt has better results compare to those observed by using anchorage made by CFRP fabric only. This study suggests implementation of anchorages through bolts or CFRP fabrics along with epoxy bonding to retrofit the heat treated elements.

2018 ◽  
Vol 174 ◽  
pp. 04013 ◽  
Author(s):  
Marta Kosior-Kazberuk ◽  
Rafał Wasilczyk

The purpose of this study was to define the influence of static longterm loads and cyclic freezing/thawing on the deflections and cracking of concrete beams with non-metallic reinforcement. The rods made of basalt fiber reinforced polymer (BFRP) and hybrid fiber reinforced polymer (HFRP) were used as non-metallic reinforcement. Four series of single span beams were loaded with a single static force in a three-point bending test, then specimens were subjected to 150 freezing/thawing cycles in a large-size climatic chamber. The experimental test results were compared to those obtained from prior carried out short-term tests and theoretical calculations based on ACI 440:1R-06 standard concerning concrete element with non-metallic reinforcement.


2013 ◽  
Vol 687 ◽  
pp. 502-507 ◽  
Author(s):  
Wei Deng Chen ◽  
Shi Yun Zhong

In order to evaluate the flexural behavior of fiber-reinforced polymer cement mortar, three-point bending test is used. Compared with different test modes and different test rates of loading, 0.1 mm/min in displacement mode is the most suitable, under which the obtained data are stable and sensitive to the micro-crack formation. Besides, tests show that mixing fiber-reinforced polymer cement mortar at slow speed and curing specimens in dry condition benefit the behavior under flexural load of the mortar.


2010 ◽  
Vol 168-170 ◽  
pp. 549-552
Author(s):  
Yan Lei Wang ◽  
Qing Duo Hao ◽  
Jin Ping Ou

A new form of fiber reinforced polymer (FRP)-concrete composite beam is proposed in this study. The proposed composite beam consists of a GFRP box beam combined with a thin layer of concrete in the compression zone. The interaction between the GFRP beam and the concrete was obtained by bonding coarse-sand on the top flange of the GFRP beam. One GFRP box beam and one GFRP-concrete composite beam were investigated in four-point bending test. Load-deflection response, mid-span longitudinal strain distributions and interface slip between GFRP beam and the concrete for the proposed composite beam were studied. Following conclusions are drawn from this study: (1) the stiffness and strength of the composite beam has been significantly increased, and the cost-to-stiffness ratio of the composite beam has been drastically reduced comparing with GFRP-only box beam; (2) a good composite action has been achieved between the GFRP beam and the concrete; (3) crushing of concrete in compression defines flexural collapse of the proposed composite beam..


2016 ◽  
Vol 78 (5-3) ◽  
Author(s):  
Norliyati Mohd Amin ◽  
Nur Aqilah Aziz ◽  
Ilya Joohari ◽  
Anizahyati Alisibramulisi

Cracks in concrete structure have always been a big threat on the strength of the concrete. Crack is one of the common deterioration observed in reinforced concrete beams and slabs. Concrete cracking is a random process, highly variable and influenced by many factors. To restore the structural capacity of the concrete damages, retrofitting and strengthening are required. There are several techniques that are used for retrofitting and strengthening reported in the literature [1], [2], [3]. This paper investigates the strength performance of retrofitting and strengthening methods of reinforced concrete one-way slab. Flexural bending test are performed on three different concrete slab of size 1000 mm x 500 mm x 75 mm. The methods that are used for retrofit are epoxy injection and patching and for the strengthening is lamination of carbon fiber reinforced polymer. The slabs were loaded to a certain stage where the cracks were formed for retrofitting and strengthening procedure. The achieved failure mode and load capacity of the concrete slab were observed. The repaired techniques for restoring and improving the structural capacity of cracked concrete slabs were analyzed. The ultimate load achieved for the epoxy injection laminate was 19.60 kN followed by CFRP laminate and patching that were 17.64 kN and 17.03 kN respectively. While the deflection value for the three specimens were 14.42 mm, 4.49 mm and 7.036 mm.  


2014 ◽  
Vol 17 (11) ◽  
pp. 1567-1583 ◽  
Author(s):  
Saleem M. Umair ◽  
Muneyoshi Numada ◽  
Kimiro Meguro

In current research work, an attempt is made to simulate the behavior of a newly proposed composite material using 3-D Applied Element Method (AEM). Fiber Reinforced Polymer (FRP) being a strong material provides a significant increase in shear strength. Polypropylene band (PP-band) not only holds the masonry wall system into a single unit but also provides a fairly high deformation capacity at a very low cost of retrofitting. A composite of FRP and PP-band is proposed and applied on the surface of masonry wall. Verification of the proposed numerical model is achieved by conducting experiments on twelve masonry wallets. Out of twelve, six masonry wallets were tested in out of plane bending test and six were tested under in-plane forces in the form of diagonal compression test. Same wallet retrofitting scheme was selected for in-plane and out of plane experiments and all of them were analyzed using proposed 3-D AEM numerical simulation tool. Proposed numerical model has served satisfactory and has shown a fairly good agreement with experimental results which encourages the use of 3D-AEM to numerically simulate the behavior of non-retrofitted and retrofitted masonry wallets.


2020 ◽  
Vol 23 (13) ◽  
pp. 2911-2927
Author(s):  
Yung William Sasy Chan ◽  
Zhi Zhou ◽  
Zhenzhen Wang ◽  
Jinping Ou

Fiber-reinforced polymer composites have been widely used to design fiber-reinforced polymer–based confined concrete columns with potential benefits. However, it is critical to design a column with sufficient post-peak performance that can prevent its collapse at the rupture of the fiber-reinforced polymer tube. This article presents the experimental results on the prior and post peaks behavior of concrete-filled double-skin tubular columns with basalt fiber-reinforced polymer (BFRP)–punched-in outer steel and BFRP-circular inner steel (BFST-DSTCs). Twenty-two specimens were tested under axial compression to investigate the effects of design parameters on the behavior of the BFST-DSTC. The outcomes reveal that the BFST-DSTC exhibits the best performance in terms of load capacity, confinement ratio, failure and damage mechanisms, and ductility in prior and post peaks. The inner fiber-reinforced polymer jacket delays the buckling of the inner tube. The punched-in patterns of the outer steel improve the confinement effectiveness of the fiber-reinforced polymer jacket. The BFST-DSTC displays a good post-peak performance with high-energy dissipation capacity that prevents the concerned structure from collapse after the fiber-reinforced polymer jacket rupture. Finally, a new confinement model is proposed to predict the ultimate point of the confined concrete.


2017 ◽  
Author(s):  
Parmo

Wheres Indonesia is a highly active tectonic zone that is prone to earthquakes. Important issue following the earthquake was retrofit structures to improvement strength and ductility structure. With the advancement of technology today has developed new innovations such as the use of material GFRP (Glass Fiber Reinforced Polymer) for external confinement structure. From the results obtained by the experimental of load capacity increased by 20% for C-2 (retrofit beam with GFRP strengthened 1 layer) compared B-1 (original beam). Retrofit beam with GFRP is added ductility as shown by the increase in displacement ductility 4% each for B-1 and B-2.


2019 ◽  
Vol 9 (8) ◽  
pp. 923-930
Author(s):  
Ning Zhuang ◽  
Junzhou Chen ◽  
Miao Zheng ◽  
Da Chen

Flexural capacity of RC beams gets significant improvement with externally bonded Carbon Fiber-reinforced Polymer (CFRP) sheet. The anchorage system is a valid means to restrain or delay debonding failure caused by stress concentration at the ends of CFRP sheets. In this paper, four RC beams, measuring 150 × 200 × 1900 mm, were examined under four-point bending test. One beam was applied for contrast. And other three were CFRP strengthened with no anchorage, CF anchors (carbon fiber anchors) and U-wraps (U-shaped CFRP wraps). The primary purpose of the experiment was to validate the effectiveness of CF anchors and U-wraps in improving the flexure character of beams strengthened with CFRP sheets. The experimental results revealed that the strengthened beams using anchorage systems performed remarkably in beam ductility, flexural capacity, load-deflection response and failure mode compared with the contrast beam. The anchorage systems were more effective and necessary to enhance the flexural behavior of beams as using CFRP laminates for flexural strengthening.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5807
Author(s):  
Maciej Mogilski ◽  
Maciej Jabłoński ◽  
Martyna Deroszewska ◽  
Robert Saraczyn ◽  
Jan Tracz ◽  
...  

The aim of this study was to measure the energy absorbed by composite panels with carbon fiber-reinforced polymer (CFRP) skins and a 5052 aluminum alloy honeycomb core and to compare it to previous research and isotropic material—two 25 × 1.75 mm 1.0562 alloy steel tubes. The panel skins layup consisted of pre-impregnated Pyrofil TR30S 210 gsm 3K 2 × 2 twill oriented in directions 0/90 and −45/45 and having a consolidated thickness of 1 mm or 2 mm. The core consisted of a 15 mm or 20 mm honeycomb oriented along its lengthwise direction. The first test consisted of a three-point bending of specimens supported at a span of 400 mm with a 50 mm radius tubular load applicator in the middle. Second, a perimeter shear test was conducted using a 25 mm diameter punch and a 38 mm diameter hole. The results of the three-point bending test show that the energy absorbed by panels with 1 mm skins was similar to the energy absorbed by the tubes (96 J), which was better than the previously considered panels. In the case of perimeter shear, the average maximum forces for the top and bottom skin were 5.7 kN and 6.6 kN, respectively. For the panel with thicker skins (2 mm), the results were about 2 times higher.


2020 ◽  
Vol 26 (4) ◽  
pp. 138-143
Author(s):  
Ronald Bašťovanský ◽  
Viera Konstantová ◽  
Jozef Bronček ◽  
Ľuboš Kučera

AbstractDecrease of vehicle emissions require design changes already at the initial concept design. Use of fiber reinforced polymer (FRP) composites in design cause reduction of weight with increasing other properties. Paper presents the case study of proposal material for frame concept of special light vehicle design. The flexural test (basically three-point bending test) of carbon fiber reinforced polymer composite bars with annular and square cross section is presented. Experimental results were verified by numerical simulation finite element method (FEM). The permanent deformation of bar with annular cross section occurred at a force 2 280 N with deflection 4.22 mm. Model numerical simulation by FEM show same course of loading. For bar with square cross section the deformation occurred at a force 2 264 N, with deflection 7 mm. Model numerical simulation by FEM show different trend (under force 2264 N the deflection was 3.4 mm).The research was supported by the Slovak Research and Development Agency under the contract no. APVV-18-0457, Special Light Electric Vehicle from Unconventional Materials toHeavy Conditions and Terrain – LEV.


Sign in / Sign up

Export Citation Format

Share Document