scholarly journals 9T SRAM CELL WITH MT-SVL TECHNIQUE FOR LEAKAGE POWER REDUCTION

2021 ◽  
Vol 9 (2) ◽  
pp. 1139-1143
Author(s):  
Kothamasu Jyothi, Et. al.

With the technology scaling there is a decrease in transistor size and increase in number of the transistors per a chip. It causes tremendous increase in complexity and the power dissipation of circuits. This paper mainly focuses on reduction of leakage power dissipation in SRAM 9T cells by employing multi threshold self controllable voltage level circuits  (LSVL & USVL). The Simulation results show that with the employment of MT-SVL technique, leakage power is being reduced compared to the improved SVL technique. The overall simulation is done with CMOS 180nm technology, using the tool of Cadence Virtuoso.

2018 ◽  
Vol 7 (2.7) ◽  
pp. 863
Author(s):  
Damarla Paradhasaradhi ◽  
Kollu Jaya Lakshmi ◽  
Yadavalli Harika ◽  
Busa Ravi Teja Sai ◽  
Golla Jayanth Krishna

In deep sub-micron technologies, high number of transistors is mounted onto a small chip area where, SRAM plays a vital role and is considered as a major part in many VLSI ICs because of its large density of storage and very less access time. Due to the demand of low power applications the design of low power and low voltage memory is a demanding task. In these memories majority of power dissipation depends on leakage power. This paper analyzes the basic 6T SRAM cell operation. Here two different leakage power reduction approaches are introduced to apply for basic 6T SRAM. The performance analysis of basic SRAM cell, SRAM cell using drowsy-cache approach and SRAM cell using clamping diode are designed at 130nm using Mentor Graphics IC Studio tool. The proposed SRAM cell using clamping diode proves to be a better power reduction technique in terms of power as compared with others SRAM structures. At 3.3V, power saving by the proposed SRAM cell is 20% less than associated to basic 6T SRAM Cell.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1718
Author(s):  
Neha Gupta ◽  
Ambika Prasad Shah ◽  
Sajid Khan ◽  
Santosh Kumar Vishvakarma ◽  
Michael Waltl ◽  
...  

This paper proposes an error-tolerant reconfigurable VDD (R-VDD) scaled SRAM architecture, which significantly reduces the read and hold power using the supply voltage scaling technique. The data-dependent low-power 10T (D2LP10T) SRAM cell is used for the R-VDD scaled architecture with the improved stability and lower power consumption. The R-VDD scaled SRAM architecture is developed to avoid unessential read and hold power using VDD scaling. In this work, the cells are implemented and analyzed considering a technologically relevant 65 nm CMOS node. We analyze the failure probability during read, write, and hold mode, which shows that the proposed D2LP10T cell exhibits the lowest failure rate compared to other existing cells. Furthermore, the D2LP10T cell design offers 1.66×, 4.0×, and 1.15× higher write, read, and hold stability, respectively, as compared to the 6T cell. Moreover, leakage power, write power-delay-product (PDP), and read PDP has been reduced by 89.96%, 80.52%, and 59.80%, respectively, compared to the 6T SRAM cell at 0.4 V supply voltage. The functional improvement becomes even more apparent when the quality factor (QF) is evaluated, which is 458× higher for the proposed design than the 6T SRAM cell at 0.4 V supply voltage. A significant improvement of power dissipation, i.e., 46.07% and 74.55%, can also be observed for the R-VDD scaled architecture compared to the conventional array for the respective read and hold operation at 0.4 V supply voltage.


Author(s):  
Vijay Kumar Sharma

Carbon nanotube field effect transistors (CNTFETs) are the best alternative option for the metal oxide semiconductor field effect transistor (MOSFET) in the ultra-deep submicron (ultra-DSM) regime. CNTFET has numerous benefits such as lower off-state current, high current density, low bias potential and better transport property as compared to MOSFET. A rolled graphene sheet-based cylindrical tube is constructed in the channel region of the CNTFET structure. In this paper, an improved domino logic (IDL) configuration is proposed for domino logic circuits to improve the different performance metrics. An extensive comparative simulation analysis is provided for the different performance metrics for different circuits to verify the novelty of the proposed IDL approach. The IDL approach saves the leakage power dissipation by 95.61% and enhances the speed by 87.10% for the 4-bit full adder circuit as compared to the best reported available domino method. The effects of the number of carbon nanotubes (CNTs), temperature, and power supply voltage variations are estimated for leakage power dissipation for the 16-input OR (OR16) gate. The reliability of different performance metrics for different circuit is calculated in terms of uncertainty by running the Monte Carlo simulations for 500 samples. Stanford University’s 32[Formula: see text]nm CNTFET model is applied for circuit simulations.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Pratibha Bajpai ◽  
Neeta Pandey ◽  
Kirti Gupta ◽  
Shrey Bagga ◽  
Jeebananda Panda

This contribution aims at improving the performance of Dynamic Differential Cascode Voltage Switch Logic (Dy-DCVSL) and Enhanced Dynamic Differential Cascode Voltage Switch Logic (EDCVSL) and suggests three architectures for the same. The first architecture uses transmission gates (TG) to reduce the logic tree depth and width, which results in speed improvement. As leakage is a dominant issue in lower technology nodes, the second architecture is proposed by adapting the leakage control technique (LECTOR) in Dy-DCVSL and EDCVSL. The third proposed architecture combines features of both the first and the second architectures. The operation of the proposed architectures has been verified through extensive simulations with different CMOS submicron technology nodes (90 nm, 65 nm, and 45 nm). The delay of the gates based on the first architecture remains almost the same for different functionalities. It is also observed that Dy-DCVSL gates are 1.6 to 1.4 times faster than their conventional counterpart. The gates based on the second architecture show a maximum of 74.3% leakage power reduction. Also, it is observed that the percentage of reduction in leakage power increases with technology scaling. Lastly, the gates based on the third architecture achieve similar leakage power reduction values to the second one but are not able to exhibit the same speed advantage as achieved with the first architecture.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 103
Author(s):  
P Sahithi ◽  
K Hari Kishore ◽  
E Raghuveera ◽  
P Gopi Krishna

The paper describes a voltage level shifter for power efficient applications which is simulated in tanner spice tool using 45nm technology. The conservative voltage level shifter is designed by using 6 transistors. The voltage level shifter cell generally used for shifting the voltage range of the signal from one voltage domain to another. This is required when the chip operate at multiple voltage domains. The circuit parameters like leakage voltage and average power dissipation are calculate for this circuit. Mainly level shifter consists of two voltage levels. One is low logic supply voltage (VDDL) another one is high logic supply voltage (VDDH). The simulation results of proposed level shifter with Wilson current mirror by 45nm technology for the input frequency of 1MHZ, the power dissipation of 0.177nW with 3db gain of 9.78.


Sign in / Sign up

Export Citation Format

Share Document