scholarly journals Air Pollution Dispersion Modeling in Port Areas

2020 ◽  
Vol 3 (3) ◽  
pp. 157-170
Author(s):  
Teodora Milošević ◽  
Lado Kranjčević ◽  
Stjepan Piličić ◽  
Marko Čavrak ◽  
Igor Kegalj ◽  
...  

For the last couple of decades, environmental protection awareness within port areas is gaining ever more importance. Ports can have a tremendous impact on the environment, especially in terms of air pollution. The main pollution sources are various port activities such as road and rail traffic, cargo handling and marine vessel operations. Air quality models can be of great help in estimating the effect on the ambient air quality from one or more sources emitting pollutants to the atmosphere. One of those models is the widely used Gaussian Plume dispersion approach. Based on existing measurements and port activity data, models can simulate the dispersion of air pollutants caused by activities and operations taking place within the port. By using historical data, they can simulate the current state of the air quality in the port and with the help of weather predictions simulate possible future situation. Simulations can assist the port manager/operator in the decision-making process in order to optimize various activities within the port and minimize their impact on the environment. One of the main objectives of the Horizon 2020 Project PIXEL (Port IoT for environmental leverage) is the deployment of environmental pollution models which can aid in the decision-making processes within the port domain. This paper reviews the current advances in the field of air pollution modelling with a special emphasis on port scenarios.

2017 ◽  
pp. 25-32
Author(s):  
Anuttara Hongthong ◽  
Yanasinee Suma ◽  
Nittaya Pasukphun ◽  
Vivat Keawdounglek

This research aims to study air pollution dispersion in Chiang Rai Province, Thailand. The relationship between air pollutants, meteorology and population health were considered. The levels of air pollutants were used to establish a spatial and temporal analysis by Inverse Distance Weighted (IDW) interpolation from Geographic Information Systems (GIS), involved with occurrences of disease cases in the study area. The average monthly air pollution data were collected from Thailand’s Pollution Control Department and data on respiratory disease were collected from Chiang Rai Provincial Public Health Office during 2011 to 2014. The results indicated that monthly average PM10 concentrations started to rise from December to April. PM10 concentrations peaked during the hot season of every year, when open burning is prac-ticed. During this period, PM10 levels exceeded Thailand’s national ambient air quality standardsof 120 μg m-3. Accumulative influenza and pneumonia cases in Chiang Rai Province were very high in Chiang Rai city centre. The spatial temperature distribution map showed higher incidence of cases of influenza and pneumonia throughout the lower temperature area of Chiang Rai city centre. Influenza was affected by PM10, rainfall, relative humidity, and temperature, according to the following correlation ratios: 0.8217, 0.8842, 0.9375 and 0.8775, respectively. The incidence of pneumonia was affected by rainfall, relative humidity and temperature following the correlation ratios 0.7746, 0.7621 and 0.9684, respectively. Whereas PM10 was low associated with pneumonia as a significant ratio was 0.6079. Pneumonia incidence decreased when rainfall and temperature decreased, and increased when relative humidity increased.


Author(s):  
Dung Minh Ho ◽  
Bang Quoc Ho ◽  
Thang Viet Le

Livestock is one of the main activities of the agricultural sector in Tan Thanh district, Ba Ria – Vung Tau province. Beside of pollution sources such as waste water, solid waste, livestock activity in Tan Thanh district, Ba Ria - Vung Tau province in recent years has caused air pollution in the livestock area and surrounding area. This research was carried out to evaluate the process of air pollution dispersion from livestock activities based on applying the TAPM meteorological model and AERMOD air quality model. The results showed that the maximum concentrations of air pollutants from livestock area such as NH3, H2S and CH3SH exceeded the National Technical Regulation on Ambient Air Quality (average hour) in the centre of Tan Thanh district, such as Toc Tien commune, part of Tan Phuoc and Phuoc Hoa communes, is 505 μg/m3; 57.4 μg/m3 and 111 μg/m3, respectively. Phu My district and other suburban communes (Hac Dich, Song Xoai, Chau Pha, Tan Hoa, Tan Hai, My Xuan, etc.) have distribution of lower concentrations of air pollutants. Base on the present results of modeling, the authors have proposed livestock development scenarios to control air pollution from this activity, contributing to environmental protection for Tan Thanh district.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


Author(s):  
Jiban Jyoti Das

Industrialization is an important aspect of a growing economy. However, rapid industrialization has caused many serious impacts on the environment. One such impact is the deteriorating air quality, especially around industries. It is said that afforestation is the best and simplest way for improving the air quality. Also, trees and plants have been increasingly used as filters for dust particles around the home, traffic roads, etc. In scientific studies, it has also been found that trees and plant leaves can be used to assess the ambient air quality by an index called the Air pollution tolerance index. A literature search has been done on the scientific database like Sciencedirect and Researchgate to review the existing knowledge of Air pollution tolerance index and to find the tolerant and sensitive species based on it so that these species can be selectively planted to assess the ambient air quality and also to develop a better green belt around refineries and industries in Assam. The study has reviewed the linkage of the impact of air pollution on leaves of plants and trees through scientific evidence. Through such scientific reviews, the most tolerant species of trees and plants were chosen with the condition that it can grow under the climatic condition of Assam. The recommendation and suggestions of tolerant tree and plant species can be used for specific species plantations for developing green belts around refineries and industries in Assam. The recommendation of sensitive species can be used for monitoring ambient air quality with reference to other standard procedures. KEYWORDS: Air pollution tolerance index, Industries, Air- pollution, Green belt


2020 ◽  
Author(s):  
Kenza Khomsi ◽  
Houda Najmi ◽  
Hassan Amghar ◽  
Youssef Chelhaoui ◽  
Zineb Souhaili

AbstractOn the 20th April 2020, the end date of the first strict lockdown period in Morocco, 2 403 410 cases of the corona Virus were confirmed globally. The number of Morocco confirmed cases attended 2990, while 12 746 were suspected and 143 deaths were recorded. Due to the pandemic of coronavirus disease 2019 worldwide and in Morocco, almost all avoidable activities in the country were prohibited since the kingdom announced activities reduction on March 16, 2020 and then general lockdown with reduced industrial activities on March 20, 2020.This study aims at comparing the air quality status in Casablanca and Marrakech, two large cities from Morocco, before the pandemic and during the lockdown situation to show whether COVID-19 compelled-anthropogenic activities lockdown may have saved lives by restraining ambient air pollution than by preventing infection.We found that, during the quarantine, NO2 dropped by -12 μg/m3 in Casablanca and -7 μg/m3 in Marrakech. PM2·5 dropped by -18 μg/m3 in Casablanca and -14 μg/m3 in Marrakech. CO dropped by -0.04 mg/m3 in Casablanca and -0.12 mg/m3 in Marrakech. This air pollution reduction had created human health benefits and had reduced mortality and saved lives mainly from cardiovascular diseases.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.


Sign in / Sign up

Export Citation Format

Share Document