scholarly journals Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds

Author(s):  
Hang Liu ◽  
Sanjairaj Vijayavenkataraman ◽  
Dandan Wang ◽  
Linzhi Jing ◽  
Jie Sun ◽  
...  

 One of the important constituents in tissue engineering is scaffold, which provides structural support and suitable microenvironment for the cell attachment, growth and proliferation. To fabricate micro/nano structures for soft tissue repair and three-dimensional (3D) cell culture, the key is to improve fibre-based scaffold fabrication. Electrohydrodynamic (EHD) jetting is capable of producing and orientating submicron fibres for 3D scaffold fabrication. In this work, an EHD-jetting system was developed to explore the relationship between vital processing parameters and fibre characteristics. In this study, polycaprolactone (PCL) solution prepared by dissolving PCL pellets in acetic acid was used to fabricate the scaffolds. The influence of voltage, motorized stage speed, solution feed rate, and solution concentration on fibre characteristics and scaffold pattern were studied. Morphology of the EHD-jetted PCL fibres and scaffolds were analysed using optical microscope images and scanning electron microscope (SEM) images. Multi-layer scaffolds with the varied coiled pattern were fabricated and analysed. Cell attachment and proliferation have to be investigated in the future by further cell culture studies on these multi-layer coiled scaffolds.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 229 ◽  
Author(s):  
Dongjin Lee ◽  
Chaenyung Cha

Tumor spheroids are considered a valuable three dimensional (3D) tissue model to study various aspects of tumor physiology for biomedical applications such as tissue engineering and drug screening as well as basic scientific endeavors, as several cell types can efficiently form spheroids by themselves in both suspension and adherent cell cultures. However, it is more desirable to utilize a 3D scaffold with tunable properties to create more physiologically relevant tumor spheroids as well as optimize their formation. In this study, bioactive spherical microgels supporting 3D cell culture are fabricated by a flow-focusing microfluidic device. Uniform-sized aqueous droplets of gel precursor solution dispersed with cells generated by the microfluidic device are photocrosslinked to fabricate cell-laden microgels. Their mechanical properties are controlled by the concentration of gel-forming polymer. Using breast adenocarcinoma cells, MCF-7, the effect of mechanical properties of microgels on their proliferation and the eventual spheroid formation was explored. Furthermore, the tumor cells are co-cultured with macrophages of fibroblasts, which are known to play a prominent role in tumor physiology, within the microgels to explore their role in spheroid formation. Taken together, the results from this study provide the design strategy for creating tumor spheroids utilizing mechanically-tunable microgels as 3D cell culture platform.


2019 ◽  
Author(s):  
Elinor Gottschalk ◽  
Eric Czech ◽  
Bulent Arman Aksoy ◽  
Pinar Aksoy ◽  
Jeff Hammerbacher

AbstractThree-dimensional (3D) cell culture systems with tumor spheroids are being adopted for research on the antitumor activity of drug treatments and cytotoxic T cells. Analysis of the cytotoxic effect on 3D tumor cultures within a 3D scaffold, such as collagen, is challenging. Image-based approaches often use confocal microscopy, which greatly limits the sample size of tumor spheroids that can be assayed. We explored a system where tumor spheroids growing in a collagen gel within a microfluidics chip can be treated with drugs or co-cultured with T cells. We attempted to adapt the system to measure the death of cells in the tumor spheroids directly in the microfluidics chip via automated widefield fluorescence microscopy. We were able to successfully measure drug-induced cytotoxicity in tumor spheroids, but had difficulties extending the system to measure T cell-mediated tumor killing.Abstract Figure


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20118-20128 ◽  
Author(s):  
Mahsa Asadniaye Fardjahromi ◽  
Amir Razmjou ◽  
Graham Vesey ◽  
Fatemeh Ejeian ◽  
Balarka Banerjee ◽  
...  

Mussel inspired ZIF8 microcarriers with high surface area, biocompatibility, and nanoscale surface roughness are applied to enhance mesenchymal stem cell attachment and proliferation in 3D cell culture.


2018 ◽  
Vol 775 ◽  
pp. 43-49
Author(s):  
Krittiya Singcharoen ◽  
Wansika Sirimongkol ◽  
Soontree Khuntong ◽  
Ratthapol Rangkupan

In present study, poly (acrylonitrile-co-methyl acrylate) nanofibers were fabricated via electrospinning method and stabilized at elevated temperature in air. Electrospinning processing parameters i.e. solution concentration, solution flow rate and applied voltage were optimized. Fiber morphology and polydispersity index of fiber size was assessed from scanning electron microscope (SEM) images. Selected nanofiber was then used to study effect of stabilization time and stabilization temperature on fiber morphology, change in chemical structure and aromatization index (AI) using Fourier transform infrared spectroscopy and differential scanning calorimetry. SEM images showed drastic morphological change of stabilized fibers compared to the as spun precursor. AI value increased as stabilization time and temperature increased and reaching maximum value of 98%. This indicated high cyclization of the aromatic ring in fiber structure. Current finding is critical for carbonization process and preparation of carbon nanofibers from PAN copolymer in the future.


2019 ◽  
Vol 26 (3) ◽  
pp. 593-602
Author(s):  
Paola Ginestra ◽  
Stefano Pandini ◽  
Elisabetta Ceretti

Purpose The purpose of this paper is to focus on the production of scaffolds with specific morphology and mechanical behavior to satisfy specific requirements regarding their stiffness, biological interactions and surface structure that can promote cell-cell and cell-matrix interactions though proper porosity, pore size and interconnectivity. Design/methodology/approach This case study was focused on the production of multi-layered hybrid scaffolds made of polycaprolactone and consisting in supporting grids obtained by Material Extrusion (ME) alternated with electrospun layers. An open source 3D printer was utilized, with a grain extrusion head that allows the production and distribution of strands on the plate according to the designed geometry. Square grid samples were observed under optical microscope showing a good interconnectivity and spatial distribution of the pores, while scanning electron microscope analysis was used to study the electrospun mats morphology. Findings A good adhesion between the ME and electrospinning layers was achieved by compression under specific thermomechanical conditions obtaining a hybrid three-dimensional scaffold. The mechanical performances of the scaffolds have been analyzed by compression tests, and the biological characterization was carried out by seeding two different cells phenotypes on each side of the substrates. Originality/value The structure of the multi-layered scaffolds demonstrated to play an important role in promoting cell attachment and proliferation in a 3D culture formation. It is expected that this design will improve the performances of osteochondral scaffolds with a strong influence on the required formation of an interface tissue and structure that need to be rebuilt.


2018 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Haobo Yuan ◽  
Ke Xing ◽  
Hung-Yao Hsu

Cell culture and cell scaffold engineering have previously developed in two directions. First can be ‘static into dynamic’, with proven effects that dynamic cultures have benefits over static ones. Researches in this direction have used several mechanical means, like external vibrators or shakers, to approximate the dynamic environments in real tissue, though such approaches could only partly address the issue. Second, can be ‘2D into 3D’, that is, artificially created three-dimensional (3D) passive (also called ‘static’) scaffolds have been utilized for 3D cell culture, helping external culturing conditions mimic real tissue 3D environments in a better way as compared with traditional two-dimensional (2D) culturing. In terms of the fabrication of 3D scaffolds, 3D printing (3DP) has witnessed its high popularity in recent years with ascending applicability, and this tendency might continue to grow along with the rapid development in scaffold engineering. In this review, we first introduce cell culturing, then focus 3D cell culture scaffold, vibration stimulation for dynamic culture, and 3DP technologies fabricating 3D scaffold. Potential interconnection of these realms will be analyzed, as well as the limitations of current 3D scaffold and vibration mechanisms. In the recommendation part, further discussion on future scaffold engineering regarding 3D vibratory scaffold will be addressed, indicating 3DP as a positive bridging technology for future scaffold with integrated and localized vibratory functions.


Author(s):  
Liang Ma ◽  
Lei Gao ◽  
Yichen Luo ◽  
Huayong Yang ◽  
Bin Zhang ◽  
...  

A porous polymer-based three-dimensional (3D) cell culture device has been developed as an in vitro tissue model system for the cytotoxicity of anticancer drug test. The device had two chambers connected in tandem, each loaded with a 3D scaffold made of highly biocompatible poly (lactic acid) (PLA). Hepatoma cells (HepG2) and glioblastoma multiforme (GBM) cancer cells were cultured in the two separate porous scaffolds. A peristaltic pump was adopted to realize a perfusion cell culture. In this study, we focus on cell viability inside the 3D porous scaffolds under flow-induced shear stress effects. A flow simulation was conducted to predict the shear stress based on a realistic representation of the porous structure. The simulation results were correlated to the cell variability measurements at different flow rates. It is shown that the modeling approach presented in this paper can be useful for shear stress predication inside porous scaffolds and the computational fluid dynamics model can be an effective way to optimize the operation parameters of perfused 3D cell culture devices.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 959
Author(s):  
Peijian Sun ◽  
Song Yang ◽  
Xuehui Sun ◽  
Yipeng Wang ◽  
Yunzhen Jia ◽  
...  

Polystyrene-based polyHIPE (polymerized high internal phase emulsion) materials were prepared by the copolymerization of styrene and divinylbenzene in the continuous phase of a HIPE. The resultant polyHIPE materials were found to have an open-cellular morphology and high porosity, and the polyHIPE structure could be well adjusted by varying the water/oil (W/O) ratio and the amount of emulsifier in the HIPE. Cell culture results showed that the resultant polyHIPE materials, which exhibited larger voids and connected windows as well as high porosity, could promote cell proliferation on the 3D scaffold. A 3D cell cytotoxicity evaluation system was constructed with the polystyrene-based polyHIPE materials as scaffolds and the cigarette smoke cytotoxicity was evaluated. Results showed that the smoke cytotoxicity against A549 cells is much lower in the 3D cell platform compared to the traditional 2D system, showing the great potential of the polyHIPE scaffolds for 3D cell culture and the cytotoxic evaluation of cigarette smoke.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (12) ◽  
pp. 2634-2646 ◽  
Author(s):  
Xiaojun Yan ◽  
Jingyu Wang ◽  
Lu Zhu ◽  
Jonathan Joseph Lowrey ◽  
Yuanyuan Zhang ◽  
...  

A ready-to-use 3D scaffold-based immunoChip combined with a 3D cell culture chip for high throughput drug hepatotoxicity evaluation.


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


Sign in / Sign up

Export Citation Format

Share Document