scholarly journals Reclaiming land flooded with salt water.

1953 ◽  
Vol 1 (4) ◽  
pp. 225-244
Author(s):  
C.W.C. Beekom

The effect of sea floods on grassland is described and recommendations are made for the restoration of inundated grassland. Turf may be heavily damaged after +or- 4 weeks inundation with water containing more than 20 g. NaCl per 1. At lower salt concentrations Poa sp. and Trifolium repens are still badly damaged but other species, notably Lolium perenne, Agrostis stolonifera and Alopecurus sp., are capable of immediate regrowth after drainage. If grassland remains submerged during spring, rising temperatures promote active growth of the grasses followed by rapid decay caused by lack of oxygen. L. perenne is especially sensitive to submergence in warm weather. The dominant weed communities which appear on land on which the turf has been destroyed by sea-water are described. Reseeding is recommended as the quickest method of restoring badly damaged turf. The flooded land should first be thoroughly drained and then repeatedly harrowed to produce a shallow seed-bed on which herbage mixtures can be sown without the application of gypsum. Given average weather conditions, normal permanent grassland mixtures can be sown at salt concentrations, measured in spring, of up to 8-10 g. NaCl per 1. of moisture in the 5-20 cm. soil layer. At a salt concentration of about 10 g. per 1. measured in spring, L. perenne tends to dominate over other species while Poa sp. and T. repens suffer during the summer. At a salt concentration of 10-15 g. per 1. in spring, Poa sp. and T. repens should be omitted from seed mixtures, instead mixtures consisting of different types of L. perenne, Festuca pratensis and Phleum pratense should be sown. When the salt concentration of the soil moisture is higher that 15 g. per 1. in spring, sowing should be delayed and the weeds checked by mowing or grazing. Temporary rises of the salt concentration in dry symmers to 25 g. per 1. are tolerated by L. perenne, F. pratensis and Ph. pratense; similar rises up to 15-18 g. per 1. are tolerated by Poa sp. and T. repens.-W.J.B. (Abstract retrieved from CAB Abstracts by CABI’s permission)

2021 ◽  
Author(s):  
Milou Huizinga ◽  
Rien Aerts ◽  
Richard S.P. van Logtestijn ◽  
Sjoerd E.A.T.M. van der Zee ◽  
Jan-Philip M. Witte

<p>Salinizing surface water is a large problem worldwide. In many areas agriculture is dependent on surface water irrigation, but there is an increasing fresh water scarcity. Due to natural and anthropogenic processes the salt concentration of surface water has risen and this problem is predicted to increase in the future. Prioritizing on when fresh water is needed and when brackish or salt water could be possible is therefor necessary. However, this holds not only for agricultural systems, but also for natural areas which are currently overlooked. In deltaic areas – such as The Netherlands – sea water is flowing further inland via rivers during summer. In addition to this, in the hinterland, artificial drainage of low-lying polders leads to a salt groundwater surplus that is discharged into rivers and surface water reservoirs. These processes lead to salinization and could potentially affect plant biodiversity and ecosystem functioning in surface water fed ecosystems, wetlands, and riparian zones. One of such a surface water fed ecosystems is an abandoned turf extraction site ‘De Botshol’ in The Netherlands. Floating root mats have developed from peat baulks into the open water of old turf ponds. These mats can harbor a great deal of protected terrestrial, typically glycophyte (i.e. optimally encountering < 300 mg Cl.l-1), plant species related to a floating fen habitat. Currently the surface water quality of Botshol is brackish and this provided us with an opportunity to follow the local salt route through space and time. Surface water salt concentrations fluctuated slightly between winter-spring: 1400 mg Cl.l-1 and summer-autumn: 1900 mg Cl.l-1 and we linked this to root zone processes and the plant community. We used a pore water extraction setup using micro- and macrorhizons placed at 30 – 60 – 200 cm from the edge of a floating root mat. Along this transect we measured at 10 – 25 – 50 – 70 cm depth. Via this setup we were able to find that the root zone salt concentrations fluctuated with surface water concentration, however there was a substantially lower salt concentration in the soil layer. Root zone concentrations still reached above 500 mg Cl.l-1 and this might explain differences in community composition in comparison with a fresh floating fen ecosystem (e.g. ‘Nieuwkoopse Plassen’, The Netherlands). We present this work to empirically link hydrology and ecology in relation to surface water salinization, but also to practically inform water boards and nature managers to understand possibilities and limitations of surface water salinization in relation to fen restoration and protection.</p>


1953 ◽  
Vol 1 (3) ◽  
pp. 153-163
Author(s):  
C.W.C. Van Beekom ◽  
C. Van den Berg ◽  
Th.A. De Boer ◽  
W.H. Van der Molen ◽  
B. Verhoeven ◽  
...  

Controlled experiments and field experience in the Netherlands have shown that the maximum concentration of salt (NaCl) in the moisture of the 5-20 cm. soil layers at which a given spring crop may be sown without risk of failure varies from year to year according to the climatic conditions prevailing in the summer. Crops which succeed in a normal season when sown at a given salt concentration in the soil moisture, may fail when a hot, dry summer follows a spring sowing at the same concentration. A table is presented showing the maximum spring salt concentrations at which various crops may be sown, under average Dutch climatic conditions, with a reasonable chance of success (i.e. of obtaining a yield at least 75% of normal). In general the figures given coincide with those already quoted by C. van den Berg in " The reaction of crops to soil salinity " Verslag. Landbouwk. Onderzoek. 1950, Vol. 56, No. 16. The maximum salt concentration permissible for the planting of fodder-potatoes is 3 g. of salt per 1. of soil-moisture, whereas in the case of potatoes for consumption, owing to the deleterious effect of salt on eating-quality, the maximum concentration permissible at planting time is 1.5 g. per 1. It is pointed out that winter-sown crops such as cereals and oil-seed rape may be sown at much higher concentrations of salt in the soil-moisture than spring crops, because winter rains leach the salt from the soil and because crop plants are able to tolerate much higher concentrations of salt at winter than at summer temperatures. In cool weather, cereals can germinate at salt concentrations as high as 20 g. per 1.-W.J.B. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


2020 ◽  
pp. 28-33
Author(s):  
Valery Genadievich Popov ◽  
Andrey Vladimirovich Panfilov ◽  
Yuriy Vyacheslavovich Bondarenko ◽  
Konstantin Mikhailovich Doronin ◽  
Evgeny Nikolaevih Martynov ◽  
...  

The article analyzes the experience of the impact of the system of forest belts and mineral fertilizers on the yield of spring wheat, including on irrigated lands. Vegetation irrigation is designed to maintain the humidity of the active soil layer from germination to maturation at the lower level of the optimum-70-75%, and in the phases of tubulation-earing - flowering - 75-80% NV. However, due to the large differences in zones and microzones of soil and climate conditions and due to the weather conditions of individual years, wheat irrigation regimes require a clear differentiation. In the Volga region in the dry autumn rainfalls give the norm of 800-1000 m3/ha, and in saline soils – 1000-1300 and 3-4 vegetation irrigation at tillering, phases of booting, earing and grain formation the norm 600-650 m3/ha. the impact of the system of forest belts, mineral fertilizers on the yield of spring wheat is closely tied to the formation of microclimate at different distances from forest edges.


2012 ◽  
Vol 41 (7) ◽  
pp. 1014-1019 ◽  
Author(s):  
Hag-Lyeol Kim ◽  
Young-Joo Yoo ◽  
In-Sun Lee ◽  
Gang-Hee Ko ◽  
In-Cheol Kim

2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  


2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Adel M. Abdel Dayem

An innovative solar desalination system is successfully designed, manufactured, and experimentally tested at Makkah, 21.4 degN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 l vertical cylindrical insulated tank. It includes storage, evaporator, and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 l a day per quadratic meter of collector surface area. By that it can produce about 1.6 l/kWh of solar energy. Moreover, the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.


This paper deals with chemical analyses for hydrogen, sodium, potassium, calcium, chloride, sulphate and nitrate ions in daily precipitation samples collected in the English Lake District, and examines the correlations of these analyses with ( a ) one another, ( b ) the amount of precipitation, ( c ) wind direction, ( d ) wind velocity, and ( e ) temperature. Highly significant correlations are found between estimates for H, K, Ca, NO 3 and SO 4 ions, and atmospheric pollution appears to supply much of the sulphate in Lake District rain, since it comes largely as sulphuric acid from the south-east. The correlation between Na and Cl is also extremely close, with the proportion between the two ions very similar to that in sea water. Since these two ions are supplied mainly from the south-west, in amounts which are greatly increased by high winds, sea spray may be inferred as the principal source. Nevertheless, evidence is presented for some small supply from atmospheric pollution, and it is furthermore suggested that mixed droplets of sea salt and sulphuric acid may, upon abstraction of moisture by freezing or evaporation, release gaseous hydrogen chloride to the air and so alter the balance of Na and Cl in precipitation. The supply of Na and Cl is also considerably higher in cold than in warm weather, a phenomenon possibly connected with stormier conditions and greater evaporation over the Atlantic Ocean. The atmospheric contribution of ions to natural waters via precipitation is shown to be of great importance, in particular to bog pools, to upland tarns on hard rocks, and to the soil solution in highly organic mor humus layers overlying heavily leached hillside soils. Sodium and chloride in most surface waters appears to be almost wholly supplied by sea spray, while calcium and magnesium bicarbonates are the main products of soil weathering. A net loss of rain acids is evident in all soil waters, although some may be more acid than normal rain water owing to considerable concentration by evaporation. The soil waters are relatively rich in potassium, presumably supplied from decaying vegetation.


Sign in / Sign up

Export Citation Format

Share Document