scholarly journals Investigation of Fuel Properties of Canola Oil Biodiesel, Bioethanol and Diesel Fuel Mixture

2018 ◽  
Vol 7 (4) ◽  
pp. 158-163
Author(s):  
Tuğba Şahin ◽  
Fatih Aydın
Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5597
Author(s):  
Michal Obergruber ◽  
Vladimír Hönig ◽  
Jan Jenčík ◽  
Jiří Hájek ◽  
Dominik Schlehöfer ◽  
...  

In this paper, the fuel properties of mixtures of diesel fuel and ethanol and diesel fuel and butanol in the ratio of 2.5% to 30% were investigated. The physicochemical properties of the blends such as the cetane number, cetane index, density, flash point, kinematic viscosity, lubricity, CFPP, and distillation characteristics were measured, and the effect on fuel properties was evaluated. These properties were compared with the current EN 590+A1 standard to evaluate the suitability of the blends for use in unmodified engines. The alcohols were found to be a suitable bio-component diesel fuel additive. For most physicochemical properties, butanol was found to have more suitable properties than ethanol when used in diesel engines. The results show that for some properties, a butanol–diesel fuel mixture can be mixed up to a ratio of 15%. Other properties would meet the standard by a suitable choice of base diesel.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Luka Lešnik ◽  
Breda Kegl ◽  
Eloísa Torres-Jiménez ◽  
Fernando Cruz-Peragón ◽  
Carmen Mata ◽  
...  

The presented paper aims to study the influence of mineral diesel fuel and synthetic Gas-To-Liquid fuel (GTL) on the injection process, fuel flow conditions, and cavitation formation in a modern common-rail injector. First, the influence on injection characteristics was studied experimentally using an injection system test bench, and numerically using the one-dimensional computational program. Afterward, the influence of fuel properties on internal fuel flow was studied numerically using a computational program. The flow inside the injector was considered as multiphase flow and was calculated through unsteady Computational Fluid Dynamics simulations using a Eulerian–Eulerian two-fluid approach. Finally, the influence of in-cylinder back pressure on the internal nozzle flow was studied at three distinctive back pressures. The obtained numerical results for injection characteristics show good agreement with the experimental ones. The results of 3D simulations indicate that differences in fuel properties influence internal fuel flow and cavitation inception. The location of cavitation formation is the same for both fuels. The cavitation formation is triggered regardless of fuel properties. The size of the cavitation area is influenced by fuel properties and also from in-cylinder back pressure. Higher values of back pressure induce smaller areas of cavitation and vice versa. Comparing the conditions at injection hole exit, diesel fuel proved slightly higher average mass flow rate and velocities, which can be attributed to differences in fluid densities and viscosities. Overall, the obtained results indicate that when considering the injection process and internal nozzle flow, GTL fuel can be used in common-rail injection systems with solenoid injectors.


1990 ◽  
Vol 4 (2) ◽  
pp. 152-156 ◽  
Author(s):  
David J. Cookson ◽  
Brian E. Smith

2021 ◽  
Vol 2 (143) ◽  
pp. 54-61
Author(s):  
Sergey V. Borisov ◽  
◽  
Aleksandr E. Lomovskikh ◽  
Oleg E. Prilepin ◽  
Timur R. Mamatkazin ◽  
...  

Improving the parameters of diesel engines is an urgent task. Work has been carried out to significantly reduce the consumption of their fuel with the introduction of water dispersions into the fuel. Currently, water-fuel emulsions with exotic emulsifiers are mainly tested. (Research purpose) The research purpose is in creation of a water-fuel emulsion without an emulsifier with a simple installation and identifying the influence of the composition and quality of this WFE on the performance of the YaMZ-236 diesel engine. (Materials and methods) The article presents a plant for the preparation of a "rough" water- fuel mixture from diesel fuel according to GOST 32511-2013 and distilled water according to GOST 6709. Authors conducted standard bench tests at the KI-5540- GOSNITI stand with a YaMZ-236 diesel engine with an upgraded fuel system and performed the control of the smoke content of the exhaust gases with the gas analyzer "AUTOTEST". The dependence of diesel performance indicators on the composition and dispersion of water-fuel emulsions without an emulsifier was studied experimentally with a minimum number of tests, but with the maximum possible combination of the values of three variable factors. (Results and discussion) The influence of various water-fuel emulsions on the performance of the diesel engine was evaluated according to the plan of a full factor experiment, including 20 tests. The second-order regression equations were obtained by mathematical processing of the test results. The feasibility of using water-fuel emulsions for diesel engines was confirmed. By modeling a water-fuel mixture without emulsifiers, there was created an aqueous dispersion with drops up to two micrometers. In the load tests of the diesel engine with it, there was noticed an improvement in its performance. (Conclusions) The introduction of 17-20 percent water dispersion with drops of up to two micrometers into diesel fuel reduced the specific fuel consumption by 18 percent, the smokiness in the K indicator by 20- 22, and in the N indicator by 30-35 percent.


Author(s):  
Jinkwan Song ◽  
Jong Guen Lee

Using a mixture of water and diesel fuel is considered a way to reduce gas emissions including NOx and COx in the gas turbine. This paper presents experimental results on spray characteristics of the water-diesel fuel mixture in an air crossflow. A plain-orifice type injector of 0.508 mm in diameter is employed in the research. Pure water, pure diesel fuel, and water-diesel fuel mixtures with different mixing ratios are used to compare their spray characteristics. In order to observe spray behaviors in different breakup regimes, Weber numbers for water of 30 and 125 are chosen as the operating condition and the corresponding Weber numbers for diesel fuel at the same conditions are 92 and 382, respectively. Momentum flux ratios are 10 and 20. A tee connection and a subsequent static mixer are employed at upstream of fuel injector to mix two liquids. Phase Doppler Particle Analyzer (PDPA) measurement is performed to measure droplet distributions and mean drop size at various mixture ratios, and planar laser induced fluorescence (PLIF) technique with dyeing either diesel or water is used to look into the primary breakup process. PDPA data show that the spray characteristics of water-diesel fuel mixtures such as mean drop size and number density distribution can be predicted from the measured drop size distribution of pure fluids by weighting those quantities by mass fraction of each fluid, indicating that the water and diesel are injected alternately without significant mixing between the two fluids. A short transition of liquid flow from water-to-diesel or diesel-to-water produces small fraction of relatively bigger droplets.


Sign in / Sign up

Export Citation Format

Share Document