scholarly journals Lignocellulosic Bioethanol and Biobutanol as a Biocomponent for Diesel Fuel

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5597
Author(s):  
Michal Obergruber ◽  
Vladimír Hönig ◽  
Jan Jenčík ◽  
Jiří Hájek ◽  
Dominik Schlehöfer ◽  
...  

In this paper, the fuel properties of mixtures of diesel fuel and ethanol and diesel fuel and butanol in the ratio of 2.5% to 30% were investigated. The physicochemical properties of the blends such as the cetane number, cetane index, density, flash point, kinematic viscosity, lubricity, CFPP, and distillation characteristics were measured, and the effect on fuel properties was evaluated. These properties were compared with the current EN 590+A1 standard to evaluate the suitability of the blends for use in unmodified engines. The alcohols were found to be a suitable bio-component diesel fuel additive. For most physicochemical properties, butanol was found to have more suitable properties than ethanol when used in diesel engines. The results show that for some properties, a butanol–diesel fuel mixture can be mixed up to a ratio of 15%. Other properties would meet the standard by a suitable choice of base diesel.

2021 ◽  
Vol 1 (50) ◽  
pp. 144-152
Author(s):  
KRZEMIŃSKI A ◽  

The most popular group of alternative fuels is that derived from renewable sources. This group of fuels includes: vegetable oils and their derivatives (for example, esters of higher carboxylic acids) alcohols (for example, ethanol and methanol) ethers (for example, methyl tert-butyl ether, ethyl tert-butyl ether) liquid biomass processing products ( synthetic fuel). Among this group, the most interesting are alcohols, especially ethanol. This is due to the fact that ethanol has better physicochemical properties than methanol. It can be produced from renewable sources and the manufacturing process is not complicated. Drinking alcohol also reduces emissions of carbon dioxide (CO2) and toxic compounds such as particulate matter and nitrogen oxides (NOx) from diesel engines. By using alternative fuels, costly engine design changes can be avoided and only regulatory changes can be made. The miscibility of ethanol with diesel is influenced by water content and temperature. At a temperature of about 10 ° C, the mixture stratifies. One additive that can be used as a stabilizer for an ethanol-diesel mixture is dodecanol (C12H26). It is obtained by reduction of methyl esters. Dodecanol is solid at a temperature of 24 ° C, insoluble in water and mixes well with diesel fuel and ethyl alcohol. In order for this type of fuel to be used to power diesel engines, it is necessary to know their physicochemical properties, since they have a significant impact on the correct operation of the internal combustion engine, operational parameters and the purity of exhaust gases into the environment. The addition of ethanol to diesel fuel affects key properties such as kinematic viscosity and density. Viscosity affects the atomization and atomization characteristics of the combustion chamber. According to Soter, a lower viscosity value leads to smaller droplet diameters, thus increasing the surface area of the droplets significantly affects the evaporation time of the droplets. Taking into account the processes occurring in the injection systems, the choice of fuel with the optimal viscosity should be a compromise option. On the one hand, the increase in viscosity is favorable due to the efficiency and pressure in the high-pressure pumps and the lubrication conditions of the moving interacting elements of the injection system, but on the other hand, it leads to an increase in energy for pumping fuel into the supply system. On the other hand, an increase in density leads to an increase in particulate emissions. Low density is associated with lower heating value. This will affect the degradation of power and torque. In such a case, in order to reduce the difference, the fuel dose should be increased, the fuel consumption will be increased and the beneficial effect of low fuel density on the reduction of particulate matter emissions will be eliminated. The article presents the results of the study of the issue substantiated the need to measure the kinematic viscosity and density of mixtures of diesel fuel with ethanol and dodecanol. The results of the viscosity measurements can be used to determine the injection parameters and the macrostructure of the atomized fuel flow. KEY WORDS: DIESEL FUEL, ALTERNATIVE FUEL, ETHYL ALCOHOL, DODECANOL, KINETIC VISCOSITY


2021 ◽  
Vol 65 (4) ◽  
Author(s):  
M. Ezeldin Osman ◽  
F. Younis ◽  
A. A. Elamin ◽  
Y. S. Suliman ◽  
T. F. Sheshko ◽  
...  

Abstract. The effect of gamma irradiation on physico-chemical properties of petro-diesel fuel using different rate and absorbed doses has been studied. The diesel fuel samples were exposed to gamma radiation for 1.3 h using different absorbed doses: 3, 6, 10, and 15 kGy, with dose rates 2.27, 4.5, 7.4, and 11.15 kGy/h, respectively. Physico-chemical characteristics of diesel fuel were determined according to the standard test methods assigned by ASTM, characteristics are: cetane number, distillation recovery points, flash point, calorific value, density, and kinematic viscosity. The effect of gamma irradiation doses on organic compounds of diesel fuel was study using GC/MS technique.  Experimental results show that the density, distillation, kinematic viscosity and flash point were decreased at absorbed doses 3, 6 and 15 kGy whereas increases at 10 kGy, corresponding with rate doses. Cetane number of diesel fuel increased after exposure to 3, 6, and 15 kGy but decreased at 10 kGy. These results can be attributed to the broken and formed bonds as a result of the high applied energy. The formed fragments at (10 kGy; 7.5 kGy/h) made a new compounds that have physical parameters affected negatively on the overall properties of diesel fuel. The formed fragments in diesel fuel after exposed to 3, 6, and 15 kGy (2.27, 4.5, and 11.15 kGy/h) have converted some of cyclic, aromatic, and branched organic compounds to linear hydrocarbons, which supported increasing of cetane number to 54. All characteristics have been improved within limits assigned by ASTM.   Resumen. Se estudió el efecto de la irradiación gamma, a diferentes velocidades y dosis adsorbidas, sobre las propiedades físico-químicas del combustible de petróleo diésel. Las muestras de combustible diesel se expusieron a radiación gamma durante 1,3 h utilizando diferentes dosis absorbidas: 3, 6, 10 y 15 kGy, con tasas de dosis de 2,27, 4,5, 7,4 y 11,15 kGy / h, respectivamente. Las características físico-químicas del combustible diesel se determinaron de acuerdo con los métodos de prueba estándar ASTM, las características son: índice de cetano, puntos de recuperación de la destilación, punto de inflamación, poder calorífico, densidad y viscosidad cinemática. Se estudió el efecto de las dosis de irradiación gamma sobre los compuestos orgánicos del combustible diesel mediante la técnica GC / MS. Los resultados experimentales muestran que la densidad, la destilación, la viscosidad cinemática y el punto de inflamación disminuyeron en las dosis absorbidas de 3, 6 y 15 kGy mientras que aumentaron a 10 kGy. El número de cetanos en el combustible diesel aumentó después de la exposición a 3, 6 y 15 kGy, pero disminuyó a 10 kGy. Estos resultados se se taribuyen a enlaces rotos y formados como resultado de la alta energía aplicada. Los fragmentos formados a (10 kGy; 7,5 kGy / h) produjeron nuevos compuestos que tienen parámetros físicos que afectan negativamente a las propiedades generales del combustible diesel. Los fragmentos formados en el combustible diesel después de la exposición a 3, 6 y 15 kGy (2,27, 4,5 y 11,15 kGy / h) convirtieron algunos de los compuestos orgánicos cíclicos, aromáticos y ramificados en hidrocarburos lineales, lo que contribuyó al aumento del índice de cetano a 54. Todas las características se han mejorado dentro de los límites asignados por ASTM.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


2021 ◽  
Vol 2 (143) ◽  
pp. 54-61
Author(s):  
Sergey V. Borisov ◽  
◽  
Aleksandr E. Lomovskikh ◽  
Oleg E. Prilepin ◽  
Timur R. Mamatkazin ◽  
...  

Improving the parameters of diesel engines is an urgent task. Work has been carried out to significantly reduce the consumption of their fuel with the introduction of water dispersions into the fuel. Currently, water-fuel emulsions with exotic emulsifiers are mainly tested. (Research purpose) The research purpose is in creation of a water-fuel emulsion without an emulsifier with a simple installation and identifying the influence of the composition and quality of this WFE on the performance of the YaMZ-236 diesel engine. (Materials and methods) The article presents a plant for the preparation of a "rough" water- fuel mixture from diesel fuel according to GOST 32511-2013 and distilled water according to GOST 6709. Authors conducted standard bench tests at the KI-5540- GOSNITI stand with a YaMZ-236 diesel engine with an upgraded fuel system and performed the control of the smoke content of the exhaust gases with the gas analyzer "AUTOTEST". The dependence of diesel performance indicators on the composition and dispersion of water-fuel emulsions without an emulsifier was studied experimentally with a minimum number of tests, but with the maximum possible combination of the values of three variable factors. (Results and discussion) The influence of various water-fuel emulsions on the performance of the diesel engine was evaluated according to the plan of a full factor experiment, including 20 tests. The second-order regression equations were obtained by mathematical processing of the test results. The feasibility of using water-fuel emulsions for diesel engines was confirmed. By modeling a water-fuel mixture without emulsifiers, there was created an aqueous dispersion with drops up to two micrometers. In the load tests of the diesel engine with it, there was noticed an improvement in its performance. (Conclusions) The introduction of 17-20 percent water dispersion with drops of up to two micrometers into diesel fuel reduced the specific fuel consumption by 18 percent, the smokiness in the K indicator by 20- 22, and in the N indicator by 30-35 percent.


Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


2020 ◽  
Author(s):  
IFEANYI GODWIN OKOYE ◽  
CHUKWUMA STEPHEN EZEONU ◽  
ELIZABETH KIGBU DANLAMI

Abstract Base – catalyzed transesterification of Shea (Vitellaria paradoxa) seed fat was carried out at a methanol/oil ratio of 5:1 (V/V) at 70oC to synthesize the corresponding methyl esters (biodiesel). The percentage yield of approximately 87%, was recorded after ninety minutes, indicating that Shea fat is a good biodiesel feedstock. The physicochemical properties of the Shea biodiesel were determined. The colour was pale yellow while the relative density (870 Kg/m3), kinematic viscosity (2.66 mm2s-1 400C), acid value (0.19 mg KOH/g), peroxide value (0.52 meq/kg) and cetane number (68.10) were observed. The cloud point was found to be 9.30C, while the flash point of 156.670C, iodine value of 35.29 mg/100g and energy value of 39.3 MJ/Kg were recorded. All these value compare well with previous works and are within acceptable limits as specified by the American Society for Testing and Materials (ASTM). The current research indicated that Shea butter has biodiesel potential aside its uses in culinary and cosmetics applications.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6564
Author(s):  
Krzysztof Górski ◽  
Ruslans Smigins ◽  
Rafał Longwic

Physico-chemical properties of diethyl ether/linseed oil (DEE/LO) fuel blends were empirically tested in this article for the first time. In particular, kinematic viscosity (ν), density (ρ), lower heating value (LHV), cold filter plugging point (CFPP) and surface tension (σ) were examined. For this research diethyl ether (DEE) was blended with linseed oil (LO) in volumetric ratios of 10%, 20% and 30%. Obtained results were compared with literature data of diethyl ether/rapeseed oil (DEE/RO) fuel blends get in previous research in such a way looking on differences also between oil types. It was found that DEE impacts significantly on the reduction of plant oil viscosity, density and surface tension and improve low temperature properties of tested oils. In particular, the addition of 10% DEE to LO effectively reduces its kinematic viscosity by 53% and even by 82% for the blend containing 30% DEE. Tested ether reduces density and surface tension of LO up to 6% and 25% respectively for the blends containing 30% DEE. The measurements of the CFPP showed that DEE significantly improves the low temperature properties of LO. In the case of the blend containing 30% DEE the CFPP can be lowered up to −24 °C. For this reason DEE/LO blends seem to be valuable as a fuel for diesel engines in the coldest season of the year. Moreover, DEE/LO blends have been tested in the engine research. Based on results it can be stated that the engine operated with LO results in worse performance compared with regular diesel fuel (DF). However, it was found that these disadvantages could be reduced with DEE as a component of the fuel mixture. Addition of this ether to LO improves the quality of obtained fuel blends. For this reason, the efficiency of DEE/LO blend combustion process is similar for the engine fuelled with regular diesel fuel. In this research it was confirmed that the smoke opacity reaches the highest value for the engine fuelled with plant oils. However, addition of 20% DEE reduces this emission to the value comparable for the engine operated with diesel fuel.


Author(s):  
Travis Kessler ◽  
Thomas Schwartz ◽  
Hsi-Wu Wong ◽  
J. Hunter Mack

Abstract The conversion of biomass using fast pyrolysis has the potential to be significantly less expensive at scale compared to alternative methods such as fermentation and gasification. Selective upgrading of the products of fast pyrolysis through chemical catalysis produces compounds with lower oxygen content and lower acidity; however, identifying the specific catalytic pathways for producing viable fuels and fuel additives often requires a trial-and-error approach. Specifically, key properties of the compounds must be experimentally tested to evaluate the viability of the resultant compounds. The present work proposes predictive models constructed with artificial neural networks (ANNs) for cetane number (CN), yield sooting index (YSI), kinematic viscosity (KV), and cloud point (CP), with blind test set median absolute errors of 5.14 cetane units, 3.36 yield sooting index units, 0.07 millimeters squared per second, and 4.89 degrees Celsius, respectively. Furthermore, the cetane number, yield sooting index, kinematic viscosity, and cloud point were predicted for over three hundred expected products from the catalytic upgrading of pyrolysis oil. It was discovered that 130 of these compounds have predicted cetane numbers greater than 40, with four of these compounds possessing predicted yield sooting index values significantly less than that of diesel fuel and predicted viscosities and cloud points comparable to that of diesel fuel.


Author(s):  
Karthik V. Puduppakkam ◽  
Chitralkumar V. Naik ◽  
Ellen Meeks

A continued challenge to engine combustion simulation is predicting the impact of fuel-composition variability on performance and emissions. Diesel fuel properties, such as cetane number, aromatic content and volatility, significantly impact combustion phasing and emissions. Capturing such fuel property effects is critical to predictive engine combustion modeling. In this work, we focus on accurately modeling diesel fuel effects on combustion and emissions. Engine modeling is performed with 3D CFD using multi-component fuel models, and detailed chemical kinetics. Diesel FACE fuels (Fuels for Advanced Combustion Engines) have been considered in this study as representative of street fuel variability. The CFD modeling simulates experiments performed at Oak Ridge National Laboratory (ORNL) [1] using the diesel FACE fuels in a light-duty single-cylinder direct-injection engine. These ORNL experiments evaluated fuel effects on combustion phasing and emissions. The actual FACE fuels are used directly in engine experiments while surrogate-fuel blends that are tailored to represent the FACE fuels are used in the modeling. The 3D CFD simulations include spray dynamics and turbulent mixing. We first establish a methodology to define a model fuel that captures diesel fuel property effects. Such a model should be practically useful in terms of acceptable computational turnaround time in engine CFD simulations, even as we use sophisticated fuel surrogates and detailed chemistry. Towards these goals, multi-component fuel surrogates have been developed for several FACE fuels, where the associated kinetics mechanisms are available in a model-fuels database. A surrogate blending technique has been employed to generate the multi-component surrogates, so that they match selected FACE fuel properties such as cetane number, chemical classes such as aromatics content, T50 and T90 distillation points, lower heating value and H/C molar ratio. Starting from a well validated comprehensive gas-phase chemistry, an automated method has been used for extracting a reduced chemistry that satisfies desired accuracy and is reasonable for use in CFD. Results show the level of modeling necessary to capture fuel-property trends under these widely varying engine conditions.


2015 ◽  
Vol 49 (6) ◽  
pp. 371-380 ◽  
Author(s):  
Brett Gantt ◽  
Shamia Hoque ◽  
Kathleen M. Fahey ◽  
Robert D. Willis ◽  
Juana Maria Delgado-Saborit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document