scholarly journals Diagnosis of Melanoma Lesion Using Neutrosophic and Deep Learning

2021 ◽  
Vol 38 (5) ◽  
pp. 1327-1338
Author(s):  
Shubhendu Banerjee ◽  
Sumit Kumar Singh ◽  
Avishek Chakraborty ◽  
Sharmistha Basu ◽  
Atanu Das ◽  
...  

Melanoma is a kind of skin cancer which occurs due to too much exposure of melanocyte cells to the dangerous UV radiations, that gets damaged and multiplies uncontrollably. This is popularly known as malignant melanoma and is comparatively less heard of than certain other types of skin cancers; however it can be more detrimental as it swiftly spreads if not detected and attended at a primary stage. The differentiation between benign and melanocytic lesions sometimes may be confusing, but the symptoms of the disease can reasonably be discriminated by a profound investigation of its histopathological and clinical characteristics. In the recent past, Deep Convolutional Neural Networks (DCNNs) have advanced in accomplishing far better results. The necessity of the present day is to have faster and computationally efficient mechanisms for diagnosis of the deadly disease. This paper makes an effort to showcase a deep learning-based ‘Keras’ algorithm, which is established on the implementation of DCNNs to investigate melanoma from dermoscopic and digital pictures and provide swifter and more accurate result as contrasted to standard CNNs. The main highlight of this paper, basically stands in its incorporation of certain ambitious notions like the segmentation performed by a culmination of a moving straight line with a sequence of points and the application of the concept of triangular neutrosophic number based on uncertain parameters. The experiment was done on a total of 40,676 images obtained from four commonly available datasets— International Symposium on Biomedical Imaging (ISBI) 2017, International Skin Imaging Collaboration (ISIC) 2018, ISIC 2019 and ISIC 2020 and the end result received was indeed motivating. It attained a Jac score of 86.81% on ISIC 2020 dataset and 95.98%, 95.66% and 94.42% on ISBI 2017, ISIC 2018 and ISIC 2019 datasets, respectively. The present research yielded phenomenal output in most instances in comparison to the pre-defined parameters with the similar types of works in this field.

Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 577
Author(s):  
Shubhendu Banerjee ◽  
Sumit Kumar Singh ◽  
Avishek Chakraborty ◽  
Atanu Das ◽  
Rajib Bag

Melanoma or malignant melanoma is a type of skin cancer that develops when melanocyte cells, damaged by excessive exposure to harmful UV radiations, start to grow out of control. Though less common than some other kinds of skin cancers, it is more dangerous because it rapidly metastasizes if not diagnosed and treated at an early stage. The distinction between benign and melanocytic lesions could at times be perplexing, but the manifestations of the disease could fairly be distinguished by a skilled study of its histopathological and clinical features. In recent years, deep convolutional neural networks (DCNNs) have succeeded in achieving more encouraging results yet faster and computationally effective systems for detection of the fatal disease are the need of the hour. This paper presents a deep learning-based ‘You Only Look Once (YOLO)’ algorithm, which is based on the application of DCNNs to detect melanoma from dermoscopic and digital images and offer faster and more precise output as compared to conventional CNNs. In terms with the location of the identified object in the cell, this network predicts the bounding box of the detected object and the class confidence score. The highlight of the paper, however, lies in its infusion of certain resourceful concepts like two phase segmentation done by a combination of the graph theory using minimal spanning tree concept and L-type fuzzy number based approximations and mathematical extraction of the actual affected area of the lesion region during feature extraction process. Experimented on a total of 20250 images from three publicly accessible datasets—PH2, International Symposium on Biomedical Imaging (ISBI) 2017 and The International Skin Imaging Collaboration (ISIC) 2019, encouraging results have been obtained. It achieved a Jac score of 79.84% on ISIC 2019 dataset and 86.99% and 88.64% on ISBI 2017 and PH2 datasets, respectively. Upon comparison of the pre-defined parameters with recent works in this area yielded comparatively superior output in most cases.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song-Quan Ong ◽  
Hamdan Ahmad ◽  
Gomesh Nair ◽  
Pradeep Isawasan ◽  
Abdul Hafiz Ab Majid

AbstractClassification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1288
Author(s):  
Cinmayii A. Garillos-Manliguez ◽  
John Y. Chiang

Fruit maturity is a critical factor in the supply chain, consumer preference, and agriculture industry. Most classification methods on fruit maturity identify only two classes: ripe and unripe, but this paper estimates six maturity stages of papaya fruit. Deep learning architectures have gained respect and brought breakthroughs in unimodal processing. This paper suggests a novel non-destructive and multimodal classification using deep convolutional neural networks that estimate fruit maturity by feature concatenation of data acquired from two imaging modes: visible-light and hyperspectral imaging systems. Morphological changes in the sample fruits can be easily measured with RGB images, while spectral signatures that provide high sensitivity and high correlation with the internal properties of fruits can be extracted from hyperspectral images with wavelength range in between 400 nm and 900 nm—factors that must be considered when building a model. This study further modified the architectures: AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, MobileNet, and MobileNetV2 to utilize multimodal data cubes composed of RGB and hyperspectral data for sensitivity analyses. These multimodal variants can achieve up to 0.90 F1 scores and 1.45% top-2 error rate for the classification of six stages. Overall, taking advantage of multimodal input coupled with powerful deep convolutional neural network models can classify fruit maturity even at refined levels of six stages. This indicates that multimodal deep learning architectures and multimodal imaging have great potential for real-time in-field fruit maturity estimation that can help estimate optimal harvest time and other in-field industrial applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew P. Creagh ◽  
Florian Lipsmeier ◽  
Michael Lindemann ◽  
Maarten De Vos

AbstractThe emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


Author(s):  
Sheng Shen ◽  
M. K. Sadoughi ◽  
Xiangyi Chen ◽  
Mingyi Hong ◽  
Chao Hu

Over the past two decades, safety and reliability of lithium-ion (Li-ion) rechargeable batteries have been receiving a considerable amount of attention from both industry and academia. To guarantee safe and reliable operation of a Li-ion battery pack and build failure resilience in the pack, battery management systems (BMSs) should possess the capability to monitor, in real time, the state of health (SOH) of the individual cells in the pack. This paper presents a deep learning method, named deep convolutional neural networks, for cell-level SOH assessment based on the capacity, voltage, and current measurements during a charge cycle. The unique features of deep convolutional neural networks include the local connectivity and shared weights, which enable the model to estimate battery capacity accurately using the measurements during charge. To our knowledge, this is the first attempt to apply deep learning to online SOH assessment of Li-ion battery. 10-year daily cycling data from implantable Li-ion cells are used to verify the performance of the proposed method. Compared with traditional machine learning methods such as relevance vector machine and shallow neural networks, the proposed method is demonstrated to produce higher accuracy and robustness in capacity estimation.


2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Mohamed Marzhar Anuar ◽  
Alfian Abdul Halin ◽  
Thinagaran Perumal ◽  
Bahareh Kalantar

In recent years complex food security issues caused by climatic changes, limitations in human labour, and increasing production costs require a strategic approach in addressing problems. The emergence of artificial intelligence due to the capability of recent advances in computing architectures could become a new alternative to existing solutions. Deep learning algorithms in computer vision for image classification and object detection can facilitate the agriculture industry, especially in paddy cultivation, to alleviate human efforts in laborious, burdensome, and repetitive tasks. Optimal planting density is a crucial factor for paddy cultivation as it will influence the quality and quantity of production. There have been several studies involving planting density using computer vision and remote sensing approaches. While most of the studies have shown promising results, they have disadvantages and show room for improvement. One of the disadvantages is that the studies aim to detect and count all the paddy seedlings to determine planting density. The defective paddy seedlings’ locations are not pointed out to help farmers during the sowing process. In this work we aimed to explore several deep convolutional neural networks (DCNN) models to determine which one performs the best for defective paddy seedling detection using aerial imagery. Thus, we evaluated the accuracy, robustness, and inference latency of one- and two-stage pretrained object detectors combined with state-of-the-art feature extractors such as EfficientNet, ResNet50, and MobilenetV2 as a backbone. We also investigated the effect of transfer learning with fine-tuning on the performance of the aforementioned pretrained models. Experimental results showed that our proposed methods were capable of detecting the defective paddy rice seedlings with the highest precision and an F1-Score of 0.83 and 0.77, respectively, using a one-stage pretrained object detector called EfficientDet-D1 EficientNet.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Juan F. Ramirez Rochac ◽  
Nian Zhang ◽  
Lara A. Thompson ◽  
Tolessa Deksissa

Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and environmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA + DCN, and our context-based DCN, using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA + DCN perform well on the original datasets but not on the noisy datasets. Our robust context-based DCN was able to outperform others in the presence of noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.


2021 ◽  
Vol 2 (01) ◽  
pp. 41-51
Author(s):  
Jwan Saeed ◽  
Subhi Zeebaree

Skin cancer is among the primary cancer types that manifest due to various dermatological disorders, which may be further classified into several types based on morphological features, color, structure, and texture. The mortality rate of patients who have skin cancer is contingent on preliminary and rapid detection and diagnosis of malignant skin cancer cells. Limitations in current dermoscopic images, including shadow, artifact, and noise, affect image quality, which may hamper detection effort. Attempts to overcome these challenges have been made by analyzing the images using deep learning neural networks to perform skin cancer detection. In this paper, the authors review the state-of-the-art in authoritative deep learning concepts pertinent to skin cancer detection and classification.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 28 ◽  
Author(s):  
Kasthurirangan Gopalakrishnan

Deep learning, more specifically deep convolutional neural networks, is fast becoming a popular choice for computer vision-based automated pavement distress detection. While pavement image analysis has been extensively researched over the past three decades or so, recent ground-breaking achievements of deep learning algorithms in the areas of machine translation, speech recognition, and computer vision has sparked interest in the application of deep learning to automated detection of distresses in pavement images. This paper provides a narrative review of recently published studies in this field, highlighting the current achievements and challenges. A comparison of the deep learning software frameworks, network architecture, hyper-parameters employed by each study, and crack detection performance is provided, which is expected to provide a good foundation for driving further research on this important topic in the context of smart pavement or asset management systems. The review concludes with potential avenues for future research; especially in the application of deep learning to not only detect, but also characterize the type, extent, and severity of distresses from 2D and 3D pavement images.


Sign in / Sign up

Export Citation Format

Share Document