scholarly journals Multifunctional role of plant cysteine proteinases.

2004 ◽  
Vol 51 (3) ◽  
pp. 609-624 ◽  
Author(s):  
Małgorzata Grudkowska ◽  
Barbara Zagdańska

Cysteine proteinases also referred to as thiol proteases play an essential role in plant growth and development but also in senescence and programmed cell death, in accumulation of storage proteins such as in seeds, but also in storage protein mobilization. Thus, they participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. In this review an attempt was undertaken to illustrate these multiple roles of cysteine proteinases and the mechanisms underlying their action.

Author(s):  
Douglas Barduche ◽  
Renato Paiva ◽  
Mauricio A. Lopes ◽  
Edilson Paiva

In this work, a woody species [A. peregrina (L.) Speg.] was studied in order to observe the effect of ABA and GA3 at the biochemical level during the process of seed germination. Embryos incubated in sucrose solution containing ABA and/or GA3 were analyzed through SDS-PAGE to observe the mobilization pattern of storage proteins during the beginning of germination. Cotyledons isolated from seeds incubated in aqueous solutions containing ABA and/or GA3, were also analyzed through SDS-PAGE and by PAGE/Activity Gels (polyacrylamide gels copolymerized with substrate for enzymes) to observe the mobilization pattern of storage proteins and protease activity after the beginning of the germination. Results of these experiments show that ABA blocks protein mobilization by inhibiting protease activity in cotyledons. This inhibition is not sufficient to prevent germination showing that the effect of ABA on germination is not dependent on protease activity. The blockage of storage protein mobilization was also observed in embryos, but no protease activity inhibition was clearly detected. ABA was able to induce the synthesis of proteins in cotyledons but not in embryos. A polypeptide with an approximate molecular weight of 17 kD, was degraded within 6 hours in control embryos, but this degradation was blocked by ABA and GA3. Using the same concentrations of ABA and GA3 on embryos and cotyledons, the effect of ABA was counteracted by GA3 in embryos, but not in cotyledons. Although the effects of ABA and GA3 were not so different from those shown in the literature, the behavior of 17 kD-polypeptide contradicts these reports suggesting that specific studies should be performed.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


2019 ◽  
Vol 61 (1) ◽  
pp. 130-143 ◽  
Author(s):  
Jian-Ping An ◽  
Xiao-Fei Wang ◽  
Richard V Espley ◽  
Kui Lin-Wang ◽  
Si-Qi Bi ◽  
...  

Abstract As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.


2019 ◽  
Vol 20 (14) ◽  
pp. 1181-1193 ◽  
Author(s):  
Aref Shariati ◽  
Hamid R. Aslani ◽  
Mohammad R.H. Shayesteh ◽  
Ali Taghipour ◽  
Ahmad Nasser ◽  
...  

Celiac Disease (CD) is a complex autoimmune enteropathy of the small intestine that commonly occurs in genetically predisposed individuals due to intake of gluten and related proteins. Gluten consumption, duration of breast-feeding, various infections, especially frequent intestinal infections, vaccinations and use of antibiotics can be linked to CD. It is predicted that it affects 1% of the global population and its incidence rate is increasing. Most of the people with the HLA-DQ2 or HLADQ8 are at a higher risk of developing this disease. The link between infections and autoimmune diseases has been very much considered in recent years. In several studies, we explained that pathogenic and non-pathogenic microorganisms might have multiple roles in initiation, exacerbation, and development of Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD). In various studies, the relationship between infections caused by viruses, such as Epstein-Barr Virus (EBV), Rotavirus, Hepatitis C (HCV), Hepatitis B virus (HBV), Cytomegalovirus (CMV), and Influenza virus, and parasites including Giardia spp. and Toxoplasma gondii with CD has been raised. However, increasing evidence proposes that some of these microorganisms, especially helminths, can also have protective and even therapeutic roles in the CD process. Therefore, in order to determine the role of microorganisms in the process of this disease, we attempted to summarize the evidence suggesting the role of viral and parasitic agents in pathogenesis of CD.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 98 ◽  
Author(s):  
Paola Infante ◽  
Ludovica Lospinoso Severini ◽  
Flavia Bernardi ◽  
Francesca Bufalieri ◽  
Lucia Di Marcotullio

Hedgehog signalling (Hh) is a developmental conserved pathway strongly involved in cancers when deregulated. This important pathway is orchestrated by numerous regulators, transduces through distinct routes and is finely tuned at multiple levels. In this regard, ubiquitylation processes stand as essential for controlling Hh pathway output. Although this post-translational modification governs proteins turnover, it is also implicated in non-proteolytic events, thereby regulating the most important cellular functions. The HECT E3 ligase Itch, well known to control immune response, is emerging to have a pivotal role in tumorigenesis. By illustrating Itch specificities on Hh signalling key components, here we review the role of this HECT E3 ubiquitin ligase in suppressing Hh-dependent tumours and explore its potential as promising target for innovative therapeutic approaches.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document