scholarly journals Preparation of Nanosized Zero-Valent zinc (Zn0) Immobilized on ZnO as Redox Nanocomposite for Degradation of Methyl Orange from Aqueous Solution

Author(s):  
Samira Taherkhani ◽  
Ali Khani

Introduction: In this study, nanosized zero-valent zinc (Zn0) as a reducing agent, simultaneously synthesized and immobilized on an oxidizing agent, ZnO photocatalyst for degradation of methyl orange (MO) from the aqueous solution. Materials and Methods: The prepared redox nanocomposite (nZn0-ZnO) was characterized by the XRD and SEM techniques. The prepared sample was separated by centrifuging. The preparation process of nZn0-ZnO including synthesis-immobilization, washing, and drying carried out under Argon gas flow. Moreover, the effect of temperature and kinetics reaction was studied. Results: The results showed that degradation efficiency of prepared redox nanocomposite was increased compared to each ZnO nanopowder and Zn0 under the same operational condition. The calculated activation energy for the degradation process was 4.05 KJ.mol-1. Finally, the results showed that the degradation processes followed pseudo first order kinetic model in the basic condition by the relative deviation modulus. Conclusion: As compared to ZnO nanopowder and Zn0, the prepared redox nanocomposite showed high degradation efficiency for the removal of methyl orange from the aqueous solution.

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 662
Author(s):  
Enjie Diao ◽  
Kun Ma ◽  
Hui Zhang ◽  
Peng Xie ◽  
Shiquan Qian ◽  
...  

The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036–0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012–0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.


2020 ◽  
Vol 20 (3) ◽  
pp. 554
Author(s):  
Emman Jassim Mohammad ◽  
Mohanad Mousa Kareem ◽  
Abbas Jasim Atiyah Lafta

This work describes the synthesis of nanocomposites of multiwall carbon nanotubes (MWCNTs) with co-oxide nanocomposite (MWCNTs)/MO. These nanocomposites were prepared using a simple evaporation and drying process. The obtained composites were characterized using X-ray diffraction (XRD), Atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM). The activity of the prepared composites was investigated by following the removal of Bismarck brown G dye (BBG) from aqueous solution via adsorption processes and photocatalytic reactions. Different reaction parameters were performed such as the effect of dosage of the used nanocomposite, pH value, and effect of temperature. In addition to that adsorption isotherms and reaction kinetics were investigated. The efficiency of photocatalytic dye removal over the prepared composites was 99.9% after one hour of reaction at the optimal conditions which were mass dosage (0.03 g), pH (5), and temperature (303 K). The adsorption isotherm data were fitted with Langmuir isotherm and the kinetic data were fitted with the pseudo-second-order kinetic model.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Azam Ghavi ◽  
Ghadamali Bagherian ◽  
Hadi Rezaei-Vahidian

Abstract Background This work studied the performance of UV/PS/TiO2NPs and UV/PI/TiO2NPs as hybrid advanced oxidation processes for degradation of paraquat in aqueous solution, because this very toxic herbicide is used third most widely. Results The effects of several factors such as UV irradiation, initial oxidant concentration, TiO2 nanoparticles dosage, and pH on the degradation efficiency were investigated. The process optimization was performed by the central composite design as a tool of response surface methodology for 30 mgL−1 of the herbicide initial concentration at 25 ℃ and 40 min of degradation process. Based on the results, a degradation efficiency of 77% and 90% were obtained for the UV/PS/TiO2NPs and UV/PI/TiO2NPs processes, respectively, in the optimum conditions. The mineralization efficiency of the paraquat solution using UV/PS/TiO2NPs and UV/PI/TiO2NPs processes are about 32% and 55%, respectively, after 40 min. The kinetic studies show that both processes follow a pseudo-first-order kinetic model, and the kinetic constants are 0.0299 min−1 for the PS process and 0.0604 min−1 for the PI process. The electrical energy consumption was estimated to be about 481.60 kWhm−3 for the PS process and 238.41 kWhm−3 for the PI process. Conclusions The degradation and mineralization efficiency of the paraquat solution using the UV/PI/TiO2NPs process was more than that of the UV/PS/TiO2NPs process at the optimum conditions after 40 min.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2013 ◽  
Vol 750-752 ◽  
pp. 1397-1400 ◽  
Author(s):  
Li Mei Duan ◽  
Jing Hai Liu ◽  
Xiu Ting Xu ◽  
Ling Xu ◽  
Zong Rui Liu

Applying one-step solvothermal synthesis method, different CdS/TiO2 nanocomposite materials are obtained by changing the ratio of sulfur and titanium sources. The composite structure and morphology are determined by XRD and TEM. Taking the degradation of methyl orange solution as a model reaction, the photocatalytic activity of CdS/TiO2 composite materials is investigated. The results show that the amount of CdS in composite photocatalyst has great effects on the degradation efficiency of methyl orange under the irradiation of sunlight, and the lower pH of reaction system is also needed to sustain the high degradation efficiency for methyl orange.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


2020 ◽  
Vol 82 (10) ◽  
pp. 2159-2167
Author(s):  
Ru-yi Zhou ◽  
Jun-xia Yu ◽  
Ru-an Chi

Abstract Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


Sign in / Sign up

Export Citation Format

Share Document