scholarly journals PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration

2014 ◽  
Vol 5 (7-8) ◽  
pp. 226-239 ◽  
Author(s):  
Federica Morani ◽  
Suratchanee Phadngam ◽  
Carlo Follo ◽  
Rossella Titone ◽  
Visa Thongrakard ◽  
...  
2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


2008 ◽  
Vol 93 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Audrey J. Robinson-White ◽  
Hui-Pin Hsiao ◽  
Wolfgang W. Leitner ◽  
Elizabeth Greene ◽  
Andrew Bauer ◽  
...  

Abstract Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s involvement. Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.


2005 ◽  
Vol 92 (10) ◽  
pp. 1899-1905 ◽  
Author(s):  
M Mandal ◽  
S Kim ◽  
M N Younes ◽  
S A Jasser ◽  
A K El-Naggar ◽  
...  

2018 ◽  
Vol 45 (5) ◽  
pp. 1772-1786 ◽  
Author(s):  
Zongjuan Li ◽  
Xiangdong Xu ◽  
Yizhuo Li ◽  
Kun Zou ◽  
Zhuo Zhang ◽  
...  

Background/Aims: PI3KCA and mutant p53 are associated with tumorigenesis and the development of cancers. NVP-BKM120, a selective pan-PI3K inhibitor, exerts the antitumor activity by suppressing the PI3K signaling pathway. Prima-1Met, a low molecular weight compound, can rescue the gain-of-function of mutant p53 by restoring its transcriptional function. In this study, we investigated whether PI3K inhibition combined with mutant p53 reactivation could enhance the antitumor effect in thyroid cancer cells. Methods: The effects of BKM120 and Prima-1Met on the proliferation, apoptosis, migration and invasion of thyroid cancer cells were measured by MTT, colony formation, flow cytometry, wound-healing and transwell assays, respectively. Thyroid differentiation was assessed by detecting the expression levels of specific markers using RT-PCR and Western blot. The in vivo antitumor efficacy was analyzed in a mouse xenograft model. Results: The combinational treatment of BKM120 and Prima-1Met significantly enhanced the inhibitions of cell viability, colony formation, migration and invasion, and the induction of apoptosis in thyroid cell lines, and synergistically suppressed tumor xenograft growth by inhibiting the PI3K/Akt/mTOR and EMT signaling pathways, up-regulating p53 targeted genes, and triggering the release of cytochrome c. Moreover, the combination of BKM120 and Prima-1Met suppressed the stemlike traits of thyroid cancer cells and promoted their differentiation by upregulating the expression of thyroid-specific differentiation markers and repressing the expression of cancer stem cell markers. Furthermore, the mechanism study demonstrated that the combinational treatment synergistically abrogated the binding of CPSF4 at the promoter of hTERT and thus suppressed hTERT expression. Consistently, overexpression of hTERT rescued the inhibitions of cell viability, invasion and stem-like traits mediated by the combination of BKM120 and Prima-1Met. Conclusion: Our results showed that the combination of BKM120 with Prima-1Met synergistically suppressed the growth of thyroid cancer cells and tumor xenografts via inhibiting PI3K/Akt/mTOR and CPSF4/hTERT signaling and reactivating mutant p53.


2019 ◽  
Vol 42 (5) ◽  
pp. 691-703 ◽  
Author(s):  
Yvette J. E. Sloot ◽  
Katrin Rabold ◽  
Thomas Ulas ◽  
Dennis M. De Graaf ◽  
Bas Heinhuis ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 751-759
Author(s):  
Wanzhi Chen ◽  
Jichun Yu ◽  
Rong Xie ◽  
Meijun Zhong

Objective: To explore the expression of miR-9-5p and BRAF in cisplatin resistant strain thyroid cancer cells and reversal effect of drug resistance as well as the possible mechanism. Methods: The cisplatin-resistant thyroid cancer cells (FTC-133/DDP and TPC-1/DDP) were respectively divided into 3 groups as NC, DDP and DDP + miRNA groups. Measuring cell proliferation by MTT assay and cell apoptosis by flow cytometry; Evaluating invasion cell number and wound healing rates by transwell and wound healing assay. The relative proteins (BRAF, Mek and Erk1/2) were measured by WB assay. The correlation between miR-9-5p and BRAF by dual-luciferase reporter assay in FTC-133/DDP and TPC-1/DDP cells. Results: In FTC-133/DDP and TPC-1/DDP cells experiment, compared with DDP group, with miR-9-5p supplement, the cell proliferation rats were significantly depressed with cell apoptosis increasing (P < 0.001, respectively); invasion cell number and wound healing rats were significantly down-regulation (P < 0.001, respectively) in DDP + miRNA groups. Meanwhile, the BRAF, Mek and Erk1/2 proteins expressions were significantly depressed in DDP + miRNA groups were significantly suppressed compared with those in DDP groups (P < 0.001, respectively). By dual-luciferase reporter assay, BRAF was the target gene of miR-9-5p in FTC133/DDP and TPC-1/DDP cells. Conclusion: miR-9-5p increases sensitivity to cisplatin in thyroid cancer cells by down-regulating BRAF expression.


2020 ◽  
Vol 27 (3) ◽  
pp. 137-151 ◽  
Author(s):  
Jesús Morillo-Bernal ◽  
Lara P Fernández ◽  
Pilar Santisteban

FOXE1 is a thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differentiated state. Interestingly, a strong association has been recently described between FOXE1 expression and susceptibility to thyroid cancer, but little is known about the mechanisms underlying FOXE1-induced thyroid tumorigenesis. Here, we used a panel of human thyroid cancer-derived cell lines covering the spectrum of thyroid cancer phenotypes to examine FOXE1 expression and to test for correlations between FOXE1 expression, the allele frequency of two SNPs and a length polymorphism in or near the FOXE1 locus associated with cancer susceptibility, and the migration ability of thyroid cancer cell lines. Results showed that FOXE1 expression correlated with differentiation status according to histological sub-type, but not with SNP genotype or cell migration ability. However, loss-and-gain-of-function experiments revealed that FOXE1 modulates cell migration, suggesting a role in epithelial-to-mesenchymal transition (EMT). Our previous genome-wide expression analysis identified Zeb1, a major EMT inducer, as a putative Foxe1 target gene. Indeed, gene silencing of FOXE1 decreased ZEB1 expression, whereas its overexpression increased ZEB1 transcriptional activity. FOXE1 was found to directly interact with the ZEB1 promoter. Lastly, ZEB1 silencing decreased the ability of thyroid tumoral cells to migrate and invade, pointing to its importance in thyroid tumor mestastases. In conclusion, we have identified ZEB1 as a bona fide target of FOXE1 in thyroid cancer cells, which provides new insights into the role of FOXE1 in regulating cell migration and invasion in thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document