scholarly journals A Review on Fog and Smog: Impact, Mode of Action and Remedial Measures under COVID-19 Pandemics 

Author(s):  
Yogesh Kumar ◽  
Rakesh Kumar ◽  
Munish Leharwan ◽  
Mamta Bhardwaj

On 11 March 2020, the World Health Organization (WHO) declared the coronavirus pandemic: the Sars-Cov-2 virus (COVID-19) is a threat to the population’s health. A positive correlation has been observed between the spread of the virus and air pollution, which is one of the greatest challenges of our millennium. COVID-19 could have an air transmission and atmospheric particulate matter could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Smog is formed when pollutants like nitrogen oxide, carbon monoxide and volatile organic compounds that are released from automobiles, industries and burning of rice crop residues (parali) and fossil fuels interact with sunlight (WHO, 2016). In this context, COVID-19 could also have an airborne transmission and particulate matter (PM 10 and PM 2.5 which is Fine particulates of 2.5 micrometer or 10 micrometer less are also among the pollutants found in smog and haze) could act as a carrier through the aerosol, conveying the virus and increasing its spread. It prove a direct correlation between current high air pollution levels and incidence of COVID-19, high pollution levels might also increase the risk of contracting COVID-19. One of the most pressing and urgent problems is that polluted air can severely endanger human health and life. Individual residents who are affected by smog pollution can often do very little to prevent it, but they can apply adaptive and protective measures to reduce their risk. Elderly and people experiencing any cardiac or respiratory illness are more prone to harmful effects of smog (Sierra Vargas et al., 2012). These measures are minimal exposure to outdoor air but if exposure is inescapable than a facemask should be worn. Those people who are affected with cardio-vascular disease and its allied patients should increase the dosage of medication on their physician’s advice to prevent worsening of disease. Supplements and food containing antioxidants like omega 3 fatty acids when added to diet may help against oxidative stress caused by pollutants (Xing et al., 2016). Therefore, it is crucial to minimize the negative effects of smog by wearing mask and reduced the environmental pollution by adopting eco-friendly products.

Author(s):  
Silvia Comunian ◽  
Dario Dongo ◽  
Chiara Milani ◽  
Paola Palestini

Sars-Cov-2 virus (COVID-19) is a member of the coronavirus family and is responsible for the pandemic recently declared by the World Health Organization. A positive correlation has been observed between the spread of the virus and air pollution, one of the greatest challenges of our millennium. COVID-19 could have an air transmission and atmospheric particulate matter (PM) could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Moreover, PM induces inflammation in lung cells and exposure to PM could increase the susceptibility and severity of the COVID-19 patient symptoms. The new coronavirus has been shown to trigger an inflammatory storm that would be sustained in the case of pre-exposure to polluting agents. In this review, we highlight the potential role of PM in the spread of COVID-19, focusing on Italian cities whose PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic. Furthermore, we analyze the positive correlation between the virus spread, PM, and angiotensin-converting enzyme 2 (ACE2), a receptor involved in the entry of the virus into pulmonary cells and inflammation.


Challenges ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6 ◽  
Author(s):  
Luigi Sanità di Toppi ◽  
Lorenzo Sanità di Toppi ◽  
Erika Bellini

It is well-known that atmospheric pollution, first and foremost the particulate matter (PM), causes serious diseases in humans. China’s metropolises and Italy’s Po Valley have in fact achieved a concerning degree of notoriety thanks to runaway air pollution problems. The spread of viral respiratory diseases is facilitated in polluted environments, an example of which is the respiratory syncytial virus bronchiolitis. In this opinion paper, we consider the possible relationship between air pollution, primarily airborne PM10–2.5, and the spread of the novel coronavirus in Northern Italy. If it is true that the novel coronavirus remains active from some hours to several days on various surfaces, it is logical to postulate that the same can occur when it is adsorbed or absorbed by the atmospheric particulate matter, which may also help carry the virus into the human respiratory system. As the Earth presents us with a very high bill to pay, governments and other authorities need to take prompt action to counter excessive pollution levels, both in Italy and in other countries.


2020 ◽  
Author(s):  
Rıdvan Karacan

<p>Today, production is carried out depending on fossil fuels. Fossil fuels pollute the air as they contain high levels of carbon. Many studies have been carried out on the economic costs of air pollution. However, in the present study, unlike the former ones, economic growth's relationship with the COVID-19 virus in addition to air pollution was examined. The COVID-19 virus, which was initially reported in Wuhan, China in December 2019 and affected the whole world, has caused many cases and deaths. Researchers have been going on studying how the virus is transmitted. Some of these studies suggest that the number of virus-related cases increases in regions with a high level of air pollution. Based on this fact, it is thought that air pollution will increase the number of COVID-19 cases in G7 Countries where industrial production is widespread. Therefore, the negative aspects of economic growth, which currently depends on fossil fuels, is tried to be revealed. The research was carried out for the period between 2000-2019. Panel cointegration test and panel causality analysis were used for the empirical analysis. Particulate matter known as PM2.5[1] was used as an indicator of air pollution. Consequently, a positive long-term relationship has been identified between PM2.5 and economic growth. This relationship also affects the number of COVID-19 cases.</p><p><br></p><p><br></p><p>[1] "Fine particulate matter (PM2.5) is an air pollutant that poses the greatest risk to health globally, affecting more people than any other pollutant (WHO, 2018). Chronic exposure to PM2.5 considerably increases the risk of respiratory and cardiovascular diseases in particular (WHO, 2018). For these reasons, population exposure to (outdoor or ambient) PM2.5 has been identified as an OECD Green Growth headline indicator" (OECD.Stat).</p>


2020 ◽  
Author(s):  
Andrew J McDonald ◽  
Balwinder-Singh ◽  
M.L. Jat ◽  
Peter Craufurd ◽  
Jon Hellin ◽  
...  

Emerging evidence supports the intuitive link between chronic health conditions associated with air pollution and the vulnerability of individuals and communities to COVID-19. Poor air quality already imposes a highly significant public health burden in Northwest India, with pollution levels spiking to hazardous levels in November and early December when rice crop residues are burned. The urgency of curtailing the COVID-19 pandemic and mitigating a potential resurgence later in the year provides even more justification for accelerating efforts to dramatically reduce open agricultural burning in India.


2021 ◽  
Vol 13 (23) ◽  
pp. 13252
Author(s):  
Sanaullah Panezai ◽  
Ubaid Ali ◽  
Alam Zeb ◽  
Muhammad Rafiq ◽  
Ayat Ullah ◽  
...  

Air pollution is among the major causes of death and disease all around the globe. The prime impact of ambient air pollution is on the lungs through the respiratory system. This study aims to estimate the health cost due to air pollution from a Sugar Mill in the Mardan district of Khyber Pakhtunkhwa, Pakistan. To determine the impact of pollution on respiratory illness, primary data were collected from 1141 individuals from 200 households living within a 3 km radius of the mill. The Household Production Method was used to drive the reduced-form Dose–Response Function and the Mitigation Cost Function for assessing the impact of pollution on health and then estimating the monetary cost associated with mitigating such illnesses. The results indicate that about 60% of the respondents living in the surrounding area of the mill suffered from different respiratory illnesses. The study estimates that by reducing the suspended particulate matter (SPM) level by 50%, the expected annual welfare gains to an individual living within a 3 km radius of the mill are US $20.21. The whole community residing within a 3 km radius of the mill will enjoy an estimated welfare gain of PKR. 70.67 million (US $0.511 million). If the pollution standard limits prescribed by the World Health Organization are followed, the expected monetary benefits to all the individuals living within a 3 km radius of the mill are PKR. 114.48 million (US $0.27 million) annually.


2019 ◽  
Vol 8 (3) ◽  
pp. 7922-7927

In Taiwan country Annan, Chiayi, Giran, and Puzi cities are facing a serious fine particulate matter (PM2.5) issue. To date the impressive advance has been made toward understanding the PM2.5 issue, counting special temporal characterization, driving variables and well-being impacted. However, notable research as has been done on the interaction of the content between the selected cities of Taiwan country for particulate matter (PM2.5) concentration. In this paper, we purposed a visualization technique based on this principle of the visualization, cross-correlation method and also the time-series concentration with particulate matter (PM2.5) for different cities in Taiwan. The visualization also shows that the correlation between the different meteorological factors as well as the different air pollution pollutants for particular cities in Taiwan. This visualization approach helps to determine the concentration of the air pollution levels in different cities and also determine the Pearson correlation, r values of selected cities are Annan, Puzi, Giran, and Wugu.


2018 ◽  
Vol 10 (30) ◽  
pp. 3745-3753 ◽  
Author(s):  
Alexandra Beal ◽  
Fernanda Garcia de Almeida ◽  
Camila A. B. Moreira ◽  
Isis M. Santos ◽  
Suzana M. M. Curti ◽  
...  

Air pollution by lead, even in small concentrations, can cause serious health effects.


Author(s):  
Anmol Sharma

Abstract: Air Pollution has become one of the significant factors behind the increase in world-wide mortality rate. There are several reasons behind this increased rate such as rapid growth of industrialization, vehicular pollution accompanied by increase in urbanisation and burning of fossil fuels. This paper presents the proper management and mitigation plan (action plan) of air pollution scenario for the city Prayagraj based upon emissions. Some major air pollutants under consideration in the city of Prayagraj are Particulate Matter (PM10) and particulate matter (PM2.5). There are several prominent sources within and outside prayagraj contributing to PM10 and PM2.5 ambient air; these pollutants can be taken as surrogate of other pollutants also, as most of the pollutants coexist and have common sources. Several major sources of pollution in the city have been noted such as from Domestic, Vehicular Pollution, Road dust, Municipal solid waste (MSW) and Brick kiln. Based upon emissions calculated from these major sources a proper mitigation and management plan has been prepared for the city. Keywords: Air pollution, Particulate Matter, Prayagraj city, Action Plan, Emissions.


Sign in / Sign up

Export Citation Format

Share Document