Impact of Rhizosphere on Competitive Effects of Neem (Azadirachta indica A. Juss.) on Associated Pigeonpea [Cajanus cajana (L.) Millsp.] in a Agroforestry System

Author(s):  
Honnayya . ◽  
B.M. Chittapur ◽  
Doddabasawa .

Background: Sustained agriculture has close intimacy with trees. However, the conventional agriculture had broken this intimacy especially by keeping trees away from the farm land for short term economic considerations. Tree may influence the associated crop either positively or negatively depending on its age, species, density, environment and management practices. Hence, understanding nature and extent of competitive effect is utmost important in adopting management practices to improve overall productivity. Methods: An investigation was carried out to assess yield variation if any in pigeonpea and the primary ecological factors responsible for the same when it was grown in association with neem (25 years old) on field bunds in a traditional agroforestry system during 2018-19 in semi-arid tropics of Karnataka, India at three distances mainly 2-7.4, 7.4-12.8 and 12.8-18.2 m on E and W of N-S and N and S of E-W tree lines.Result: Averaged over directions significantly lower pigeonpea yield (3.76 q ha-1) was recorded near the tree line at 2-7.4m distance, while it increased with increase in the distance from tree line and was the highest (7.61q ha-1) at far away distance (12.8-18.2 m) at which yield was on par with control (without any trees), though soil near the tree line (2-7.4m) recorded significantly higher soil organic carbon and microbial population (fungi, bacteria and actinomycetes) indicating better soil health and moisture.This leads to the conclusion that it is not merely the rhizosphere characteristics or neem root interference but the above ground factors particularly light availability to pigeonpea as influenced by neem canopy is important in the agroforesty system.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 395
Author(s):  
Alex J. Lindsey ◽  
Adam W. Thoms ◽  
Marshall D. McDaniel ◽  
Nick E. Christians

Soil health and sustainable management practices have garnered much interest within the turfgrass industry. Among the many practices that enhance soil health and sustainability are applying soil additives to enhance soil biological activity and reducing nitrogen (N) inputs—complimentary practices. A two-year study was conducted to investigate if reduced N fertilizer rates applied with humic substances could provide comparable turfgrass quality as full N rates, and whether humic fertilizers would increase biological aspects of soil health (i.e., microbial biomass and activity). Treatments included synthetic fertilizer with black gypsum (SFBG), poly-coated humic-coated urea (PCHCU; two rates), urea + humic dispersing granules (HDG; two rates), urea, stabilized nitrogen, HDG, and a nontreated control. Reduced rates of N with humic substances maintained turfgrass quality and cover, and reduced clipping biomass compared to full N rates. There were no differences in soil physical and chemical properties besides soil sulfur (S) concentration. SFBG resulted in the highest soil S concentration. Fertilizer treatments had minimal effect on microbial biomass and other plant-available nutrients. However, PCHCU (full rate) increased potentially mineralizable carbon (PMC) and N (PMN) by 68% and 59%, respectively, compared to the nontreated control. Meanwhile SFBG and stabilized nitrogen also increased PMC and PMN by 77% and 50%, and 65% and 59%, respectively. Overall, applications of reduced N fertilizer rates with the addition of humic substances could be incorporated into a more sustainable and environmentally friendly turfgrass fertilizer program.


2009 ◽  
Vol 24 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Olha Sydorovych ◽  
Charles W. Raczkowski ◽  
Ada Wossink ◽  
J. Paul Mueller ◽  
Nancy G. Creamer ◽  
...  

AbstractConventional agriculture often aims to achieve high returns without allowing for sustainable natural resource management. To prevent environmental degradation, agricultural systems must be assessed and environmental standards need to be developed. This study used a multi-factor approach to assess the potential environmental impact risk of six diverse systems: five production systems and a successional system or abandoned agronomic field. Assessment factors were soil quality status, amount of pesticide and fertilizer applied and tillage intensity. The assessment identified the best management practices (BMP)–conventional tillage system as a high-risk system mostly because of extensive tillage. The certified organic system was also extensively tilled and was characterized by P build-up in the soil, but performed well based on other assessment factors. Conversely, the BMP–no tillage and the crop–animal integrated system were characterized as low risk mainly because of reduced tillage. The paper discusses assessment strengths and weaknesses, ways to improve indicators used, and the need for additional indicators. We concluded that with further development the technique will become a resourceful tool to promote agricultural sustainability and environmental stewardship and assist policy-making processes.


Author(s):  
L A Gabbarini ◽  
E Figuerola ◽  
J P Frene ◽  
N B Robledo ◽  
F M Ibarbalz ◽  
...  

Abstract The effects of tillage on soil structure, physiology, and microbiota structure were studied in a long-term field experiment, with side-to-side plots, established to compare effects of conventional tillage (CT) vs. no-till (NT) agriculture. After 27 years, part of the field under CT was switched to NT and vice versa. Soil texture, soil enzymatic profiles, and the prokaryotic community structure (16S rRNA genes amplicon sequencing) were analysed at two soil depths (0–5, 5–10 cm) in samples taken 6, 18, and 30 months after switching tillage practices. Soil enzymatic activities were higher in NT than CT, and enzymatic profiles responded to the changes much earlier than the overall prokaryotic community structure. Beta diversity measurements of the prokaryotic community indicated that the levels of stratification observed in long-term NT soils were already recovered in the new NT soils thirty months after switching from CT to NT. Bacteria and Archaea OTUs, which responded to NT were associated with coarse soil fraction, SOC and C cycle enzymes while CT responders were related to fine soil fractions and S cycle enzymes. This study showed the potential of managing the soil prokaryotic community and soil health through changes in agricultural management practices.


2015 ◽  
Vol 4 (3) ◽  
pp. 116 ◽  
Author(s):  
Lynette K. Abbott ◽  
David A. C. Manning

<p>Soil health is dependent upon complex bio-physical and bio-chemical processes which interact in space and time. Microrganisms and fauna in soil comprise highly diverse and dynamic communities that contribute, over either short or long time frames, to the transformation of geological minerals and release of essential nutrients for plant growth. Certified organic soil management practices generally restrict the use of chemically-processed highly soluble plant nutrients, leading to dependence on nutrient sources that require microbial transformation of poorly soluble geological minerals. Consequently, slow release of nutrients controls their rate of uptake by plants and associated plant physiological processes. Microbial and faunal interactions influence soil structure at various scales, within and between crystalline mineral grains, creating complex soil pore networks that further influence soil function, including the nutrient release and uptake by roots. The incorporation of organic matter into soil, as either manure or compost in organic farming systems is controlled to avoid excessive release of soluble nutrients such as nitrogen and phosphorus, while simultaneously contributing an essential source of carbon for growth and activity of soil organisms. The interdependence of many soil physical and chemical processes contributing to soil health is strongly linked to activities of the organisms living in soil as well as to root structure and function. Capitalizing on these contributions to soil health cannot be achieved without holistic, multiscale approaches to nutrient management, an understanding of interactions between carbon pools, mineral complexes and soil mineralogy, and detailed examination of farm nutrient budgets.</p>


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Katherine Sánchez-Zúñiga ◽  
◽  
Ana Tapia-Fernández ◽  
William Eduardo Rivera-Méndez ◽  
◽  
...  

Soil microorganisms play an important role as a link in the transfer of nutrients from the rhizosphere. The physical and chemical properties of soil, the metabolic profiles of microbial communities and different crop management practices can enhance our understanding of hizospheric interactions. This study aimed to establish differences in microbial communities associated with banana crops and the biochemical profile in farms under different agronomic conditions. Seven farms with different levels of intervention, management, and fusariosis severity were analyzed. The biochemical profile of the microbial community was determined using EcoPlates and the main substrates consumed by the microbial communities were identified through multivariate principal component analysis (PCA). Seven microorganisms were selected as indicators of nutrient cycles, pathogenicity and soil health. Also, soil chemical indicators were determined through a complete mineral analysis. For the physiological profile of soil microbial populations, it was observed that farms with the same management tend to be metabolically very similar. In the PCA, two principal components explained 90 % of the variance in the data. It was also determined that the genus Bacillus is predominant in all farms and that farm 4 (medium intervention) presented the most favorable values in all factors analyzed. The effective cation exchange capacity values are highlighted in the chemical analyses, which determined that all farms have a high fertility level. The metabolic profile, diversity and richness of each of the different farms were affected by the type of agronomic management used.


Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 43-57
Author(s):  
Rhys Rebello ◽  
Paul J. Burgess ◽  
Nicholas T. Girkin

Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.


2018 ◽  
Vol 9 (2) ◽  
pp. 110-123 ◽  
Author(s):  
Katherine E. French

Anthelmintic resistance in livestock is increasing globally. Livestock intestinal parasites now develop resistance to synthetic anthelmintics within 2–10 years, collectively costing billions of dollars annually in lost revenue around the world.  Over-reliance on commercial drugs and dips and changes in livestock management practices are key drivers of this trend.  To date, current research has focused on identifying new anthelmintics from bacterial and fungal sources or even synthesizing new drugs that target parasite metabolism or reproduction. Plant-derived anthelmintics are a promising alternative, yet to date major research funders and scientists have overlooked this option. Until the mid-20th century, rural communities relied on plant-based methods of controlling livestock parasites. These methods include feeding livestock specific medicinal plants and trees, grazing livestock on herbal leys, and changing where livestock grazed based on ecological factors (e.g., flooding) that increased parasite burdens. Many historic texts and ethnological accounts record the ethnobotanical knowledge of rural communities and the plants they used to control livestock intestinal parasites. Some traditions persist today yet the farmers, graziers, and shepherds who hold this knowledge are rapidly disappearing and with them perhaps a potential long-term solution to anthelmintic resistance. This short perspective piece will cover recent research using ethnobotanical data as a means to identifying potential new anthelmintics; the morphological, physiological, and metabolic effect of plant secondary metabolites on parasites; and an overview of “best practices” which can reduce bias in assessments of plant bioactivity and increase reproducibility of test results. This will hopefully bring recent advances in ethnobiology, chemistry, and ecology to new audiences, and, potentially, spark new interest in using medicinal plants to improve livestock health.


2021 ◽  
Vol 107 ◽  
pp. 103362
Author(s):  
Umme Aminun Naher ◽  
Md Mozammel Haque ◽  
Faruk Hossain Khan ◽  
Md Imran Ullah Sarkar ◽  
Tahmid Hossain Ansari ◽  
...  

Author(s):  
Dhiman Mukherjee

In the emerging global economic order in which agricultural crop production is witnessing a rapid transition to agricultural commodity production, potato is appearing as an important crop, poised to sustain and diversify food production in this new millennium. Temperature and unpredictable drought are two most important factor affecting world food securities and the catalyst of the great famines of the past. Decreased precipitation could cause reduction of irrigation water availability and increase in evapo-transpiration, leading to severe crop water-stress conditions. Increasing crop productivity in unfavourable environments will require advanced technologies to complement traditional methods which are often unable to prevent yield losses due to environmental stresses. Various crop management practices such as improved nutrient application rate, mulching, raised beds and other improved technology help to raise the productivity. Conservation farming practices play important role to restore soil and enhancing soil health and play important role to combat climate change issue.


Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 340
Author(s):  
B. Kelly ◽  
C. Allan ◽  
B. P. Wilson

'Soil health' programs and projects in Australia's agricultural districts are designed to influence farmers' management behaviours, usually to produce better outcomes for production, conservation, and sustainability. These programs usually examine soil management practices from a soil science perspective, but how soils are understood by farmers, and how that understanding informs their farm management decisions, is poorly documented. The research presented in this paper sought to better understand how dryland farmers in the Billabong catchment of southern New South Wales use soil indicators to inform their management decisions. Thematic content analysis of transcripts of semi-structured, face-to-face interviews with farmers suggest several themes that have implications for soil scientists and other professionals wishing to promote soil health in the dryland farming regions of south-eastern Australia. In particular, all soil indicators, including those related to soil 'health', need to relate to some clear, practical use to farmers if they are to be used in farm decision making. This research highlights a reliance of the participants of this research on agronomists. Reliance on agronomists for soil management decisions may result in increasing loss of connectivity between farmers and their land. If this reflects a wider trend, soil health projects may need to consider where best to direct their capacity-building activities, and/or how to re-empower individual farmers.


Sign in / Sign up

Export Citation Format

Share Document