scholarly journals ANALYSIS OF MANAGERIAL COMPONENTS IN MOSQUITO VECTORS (AEDES AEGYPTI) CONTROL IN THE BUFFER AREA OF THE CLASS 1 SURABAYA PORT HEALTH OFFICE

2021 ◽  
Vol 16 (2) ◽  
pp. 230
Author(s):  
Fauzia Yulianti Ramadhani

ABSTRACTThe Aedes aegypti index in the buffer area of the Class 1 Surabaya Port Health Office was in accordance with the Standard Operating Procedures (SOP) as stated in the Regulation of the Indonesian Ministry of Health Number 431 of 2007 (431/MENKES/SK/IV/2007) on Technical Guidelines for Control of Environmental Health Risks in Ports/Airports/Cross-Border in the Context of Health Quarantine. The Port Health Office has responsibilities to control environmental risks, one of which was the Aedes aegypti mosquitos in the borders. This study was descriptive observational and aimed to analyze the managerial components in Aedes aegypti mosquito control in the buffer area ofthe Class 1 Surabaya Port Health Office in Surabaya. The research variables (factors that determine control activities) were manpower, money, methods, materials, markets, machines, and information. The research subjects were two officers at Class 1 Surabaya Port Health Office and five cadres who monitored larva. Data were analyzed descriptively. The results explained that manpower, money, materials, market, technology, and information were all in accordance with the SOP of the Surabaya Port Health Office. However, the larva survey method did not comply with the SOP as officers still used the visual method. It was concluded that managerial components in Aedes aegypti control by Class 1 Surabaya Port Health Office followed the SOP except in their larva survey method. The researchers recommended carrying out a larva survey method by taking 1 larva from each container (single larva) at a time. Keywords: Aedes aegypti, control vector, managerial components.

Author(s):  
Amalan Tomia ◽  
Upik Kesumawati Hadi ◽  
Susi Soviana ◽  
Elok Budi Retnani

Dengue hemorrhagic fever (DHF) is a contagious disease caused by the dengue virus and transmitted through the bite of Aedes aegypti. Information regarding larval habitat is very important for the control of Ae. aegypti. The studied aims to determine the density of Ae. aegypti larvae and maya index in Ternate City. The research conducted in 20 urban villages in Ternate City for 5 months. Survey method used was single larva and any water reservoirs were found larvae of Aedes spp.  will be taken as a sample. The purpose of this study to measure the density of Ae. aegypti larvae and maya index in Ternate City. The parameters calculated were Container Index (CI), Breteau Index (BI), House Index (HI), Density Figure (DF), and Maya Index. Based on maya index, 1.990 houses in 20 urban villages in Ternate City included in the medium risk category (78.64%) with CI (43.95%), HI (84.99%) and BI (228.91). Density figure in the high category (DF = 8.7). The study concluded that most of households in the area of study still have the potential for transmission of dengue virus infection.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Shufo Shidiq Arinanto ◽  
Ngadino . ◽  
Hadi Suryono

Juanda Airport of Surabaya can be ragrded as a gathering point for travellers from various countries andtherefore contributes to the risk of global disease transmission. One of the transmissions may occur throughthe Aedes aegyptivector, a cause of Dengue Hemorrhagic Fever (DHF); as well as the yellow fever; both mayinduce death. The 2012 Annual Report of the Port Health Office of Surabaya showed that House Index,Container Index, and Bruteau Index in the buffer area remained over 1%, whereas the technical requirementsfor airports said that the perimeter area must be totally free of life vector and the buffer area indices must beless than 1%. The purpose of the present study was to indentify and assess the implementation of vectorcontrol programs in reducing the populations of Aedes aegypti at Juanda Airport of Surabaya. This study useddescriptive methods aimed at describing the implementation of Aedes aegypti control program at Juandaairport of Surabaya. The object of the study was the perimeter and buffer areas of Juanda Airport.Results showed that, of the six variables under study, 5 (five) variables of Aedes aegypti controlimplementation did satisfy the requirements. The variable on the mapping of Aedes aegypti breeding placesmet the requirements satisfactorily. The variables on larval surveys, adult mosquito surveys, counselingactivities, larvaciding and fogging did not satisfy the requirements. In conclusion, the implementation ofAedes aegypttontrol in Juanda Airport in 2014 did satisfy the designated requirements.It is recommended that Sedati Community Health Center and the Health Office of Juanda Airport of Surabayaimprove their existing cooperation so that the buffer area, which is under the responsibility of both entities,remains the target of surveillance in order for the area to be sterile of Aedes aegypti breeding, in accordancewith the standards and requirements as stated in the Decree of the Health Minister of Republic of IndonesiaNo. 431/Menkes/SK/IV/2007.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


Author(s):  
Bethany L McGregor ◽  
Bryan V Giordano ◽  
Alfred E Runkel ◽  
Herbert N Nigg ◽  
H Lee Nigg ◽  
...  

Abstract Mosquito control districts in the United States are limited to two main classes of adulticides, pyrethroids and organophosphates, to control mosquitoes. Two adulticides used to control domestic mosquitoes are Fyfanon EW (malathion, organophosphate) and DeltaGard (deltamethrin, pyrethroid). While the effect of these pesticides on European honeybees (Apis mellifera L., Hymenoptera: Apidae) has been investigated, effects on native pollinators need additional research. The purpose of this study was to investigate the acute nontarget effects of these pesticides on Bombus impatiens Cresson (Hymenoptera: Apidae), a native North American bumble bee species, and compare these effects to wild and laboratory strains of mosquitoes (Aedes aegypti (L.) and Culex quinquefasciatus Say, Diptera: Culicidae) through field and laboratory assays. Bombus impatiens was found to be resistant to Fyfanon EW (x̅ = 6.7% mortality at 50-µg malathion per bottle) at levels that caused significant mortality to study mosquitoes (86.2 ≥ x̅ ≥ 100% mortality) in laboratory bottle bioassays. Comparatively, B. impatiens demonstrated greater mortality to DeltaGard (93.3%) at 2.5-µg deltamethrin/bottle than any mosquito colony assayed (14.1 ≥ x̅ ≥ 87.0% mortality). Only DeltaGard was tested in field applications. In the field, we observed acute effects of DeltaGard on mosquitoes and B. impatiens at 25- and 75-m distance from a truck-mounted ultra-low volume fogger, although treatment effects were not significant for B. impatiens. Additional wild-caught nontarget mortality to DeltaGard field trials was also evaluated. This study indicated that common mosquito control adulticides do cause nontarget mortality to B. impatiens but that impacts are variable depending on pesticide and further studies are needed.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Nor Shaida Husna Zulkrnin ◽  
Nurul Nadiah Rozhan ◽  
Nur Amanina Zulkfili ◽  
Nik Raihan Nik Yusoff ◽  
Mohd Sukhairi Mat Rasat ◽  
...  

Dengue is vector-borne diseases with 390 million infections per year extending over 120 countries of the world. Aedes aegypti (L.) (Diptera: Culicidae) is a primary vector for dengue viral infections for humans. Current focus on application of natural product against mosquito vectors has been the main priority for research due to its eco-safety. The extensive use of chemical insecticides has led to severe health problems, environmental pollution, toxic hazards to human and nontarget species, and development of insecticide resistance on mosquitoes. Azolla pinnata is an aquatic fern and predominantly used as feed in poultry industry and as fertilizer in agricultural field for enhancing the fertility of rice paddy soil. The present study was conducted to explore the larvicidal efficacy of A. pinnata using fresh and powdered form against late third-stage larvae (6 days, 5 mm in larvae body length) of Ae. aegypti (L.) (Diptera: Culicidae). The larvicidal bioassays were performed using World Health Organization standard larval susceptibility test method for different concentration for powdered and fresh A. pinnata. Powdered A. pinnata concentration used during larvicidal bioassay ranges from 500ppm to 2000ppm; meanwhile, fresh A. pinnata ranges from 500ppm to 9,000,000 ppm. The highest mortality was at 1853 ppm for powdered A. pinnata compared with fresh A. pinnata at 2,521,535 ppm, while the LC50 for both powdered and fresh A. pinnata recorded at 1262 ppm and 1853 ppm, respectively. Finally, the analysis of variance (ANOVA) showed significant difference on Ae. aegypti larval mortality (F=30.439, df=1, p≤0.001) and concentration (F=20.002, df=1, p≤0.001) compared to powdered and fresh A. pinnata at 24-hour bioassay test. In conclusion, the powdered A. pinnata serves as a good larvicidal agent against Ae. aegypti (L.) (Diptera: Culicidae) and this study provided information on the lethal concentration that may have potential for a more eco-friendly Aedes mosquito control program.


2018 ◽  
Vol 147 ◽  
Author(s):  
Alberto J. Alaniz ◽  
Mario A. Carvajal ◽  
Antonella Bacigalupo ◽  
Pedro E. Cattan

AbstractZika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.


2018 ◽  
Vol 6 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Roopa Rani Samal ◽  
Sarita Kumar

Background: Mosquito control is a major concern throughout the world because of rising cases of mosquito-borne diseases. The outbreak of Zika, Dengue and Chikungunya has caused grave situations raising urgent need to control Aedes aegypti. Moreover, extensive use of synthetic insecticides in mosquito control programs has resulted in high levels of insecticide resistance leading to the use of magnified concentrations, impacting human health and environment adversely. The knowledge about current status of the insecticide susceptibility against Ae. aegypti could help to devise mosquito control strategy. Objective: Present study evaluates the larvicidal potential of thirteen insecticides belonging to seven different classes; organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, avermectins and secondary metabolites; against early fourth instars of Ae. aegypti. Materials and Methods: The insecticide susceptibility was evaluated as per WHO protocol. Fatality counts were made after 24h of exposure; and the LC50, LC90 and other statistical parameters were computed by probit-regression analysis. Results: The data reveals the maximum efficacy of pyrethroids and fenitrothion, with lethal values less than 0.001 ppm. Avermectins, organochlorines and carbamates were moderately toxic, while neonicotinoid posed appreciable toxicity. In contrast, berberine, a secondary plant metabolite was found inefficient. The larvicidal efficacy of tested insecticides against Ae. aegypti was found in the decreasing order of pyrethroids > organophosphates > avermectins > organochlorines > carbamates > neonicotinoids > secondary metabolites. Conclusion: Present investigations explore various toxicants as Dengue vector control agents in order to devise a suitable control strategy for mosquito control in fields.


2021 ◽  
Vol 37 (4) ◽  
pp. 271-279
Author(s):  
Heidi L. Murray ◽  
Catherine A. Pruszynski ◽  
Lawrence J. Hribar

ABSTRACT Since 2011, the Florida Keys Mosquito Control District (FKMCD) has used the WALS® application strategy with VectoBac® WDG containing Bacillus thuringiensis israelensis via helicopter in Key West for the control of Aedes aegypti larval populations. In 2018, FKMCD conducted a study to determine the effectiveness of using a trailer-mounted A1 Super Duty Mist Sprayer® (A1 Mist Sprayers) with a Micronair® AU5000 (Micron Group) atomizer to apply VectoBac WDG by ground at the rate of 0.5 lb/acre (0.56 kg/ha). Bioassay cups were placed in a residential area encompassing open, moderate, and heavy cover scenarios between 0 and 300 ft (0–91.44 m) perpendicular to the spray line. An application rate of 0.5 lbs/acre (0.56 kg/ha) was used. Bioassay cups were collected after application and returned to the laboratory where 100 ml of distilled water and 10 F1 generation Ae. aegypti larvae were added. Laval mortality was monitored at 2, 4, and 24 h. Three separate runs were completed during the summer of 2018. Average larval mortality at 24 h was >90%. The field trial demonstrated sufficient efficacy to introduce this method of larviciding into operational use.


2019 ◽  
Vol 98 (8) ◽  
pp. 893-896
Author(s):  
Svetlana A. Roslavtseva

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.


Sign in / Sign up

Export Citation Format

Share Document