scholarly journals An Overview of Multi-Antibiotic Resistance in Pathogenic Bacteria - From Selected Genetic and Evolutionary Aspects - A Review

Author(s):  
András Fodor ◽  
Birhan Addisie Abate ◽  
Péter Deák ◽  
László Fodor ◽  
Michael G. Klein ◽  
...  

The challenge posed by multi-drug resistance (MDR) of pathogenic organisms, spectacularly manifested in the 6 “ESKAPE” bacterium (two Gram-positive, four Gram-negative) species, should invoke new comprehensive strategies, and needs cooperation of scientists with medical, veterinary and natural science background. This review is aimed at informing newcomers, coming from the field of biology and genetics, about problems related to rapidly emerging, new multi-drug resistant, pathogenic, bacteria. Unlike persistence, the antibiotic resistance is inherited. A functioning “resistance gene” makes a susceptible organism resistant to a given antibiotic, encoding for polypeptides capable of acting either as decomposing enzymes, or acting as trans-membrane pumps, or membrane structure components capable of modifying the permeability implementing a «by pass» mechanism enabling the antibiotic molecule to reach its cellular target(s). A functioning “sensitivity gene” encode for a polypeptide, capable (directly or indirectly) of transferring toxic molecules into target cells, or of metabolizing non-transferable to transferable, or non-toxic molecules to toxic derivatives. A gene of a normal function could act as a “sensitivity” gene in the presence of antibiotics of chemical structures similar to the natural substrate of the gene product, (enzyme or binding/ trans-membrane protein). The Agrocin 84 story is a good example. Multi-drug resistance is a phenotypic consequence of the sequential accumulation of mutations, and/or up-take of plasmids or genomic islands carrying resistance genes from the environment via horizontal gene transfer, mediated by conjugative plasmid or bacteriophage carrying mobile genetic elements. Both multi-drug resistance and collateral sensitivity are evolutionary products. Some revealed evolutionary process and their Lamarckian and Darwinian interpretations are discussed. Toolkits of comparative full-genome sequencing, genomics, experimental evolution and population genetics may provide perspectives for overcoming the invincibility of multi-drug panresistance. The status of some recently emerging pathogenic bacterium species with zoonic features and of veterinary background is also discussed.

Author(s):  
Jai Sunder ◽  
T. Sujatha ◽  
S. Bhowmick ◽  
S.C. Mayuri ◽  
A.K. De ◽  
...  

Background: Transmission of antibiotic resistance from animal food chain to human through animal food-borne pathogens have led to increased public concern. Wider surveillance on prevalence of antibiotic resistance in E. coli will provide information on evolution of resistance in various geographical locations. The purpose of this study was to investigate the presence of antimicrobial resistance of E. coli isolates from poultry under various farming system in A and N Islands and resistance genes of tet, ctx-M and aac encoding the isolates. Methods: Isolates were obtained from cloacal swabs in poultry under various farming systems and tested against major antimicrobial derivatives to study multi drug resistance. The presence of genes associated with resistance to tetracycline (tet A), ESBL (CTX-M) and Gentamycin (aac(3)-IV) were determined by PCR. Result: A total of 126 cloacal samples were analysed out of which 31.38% of the E.coli isolates from poultry under various farming systems were producing extended spectrum beta-lactamases and were multiple antimicrobial resistant. Poultry birds of commercial farms showed higher resistance levels (37.5%) than organised farms (24.76%) and desi birds (31.88%). Results indicate a high level of multi-drug resistance is emerging even in desi birds. It is suggested that an antimicrobial resistance surveillance program is needed in A and N Islands in order to detect bacterial resistance among rural poultry production as the 80 percentage of total poultry population belong to desi birds.


2019 ◽  
Vol 17 (6) ◽  
pp. 930-943 ◽  
Author(s):  
Adegboyega O. Oladipo ◽  
Oluwatosin G. Oladipo ◽  
Cornelius C. Bezuidenhout

Abstract Multi-drug resistance traits of Staphylococcus species especially methicillin-resistant Staphylococcus aureus (MRSA) in the clinical settings are well established. Of environmental concern is hospital effluents discharging into wastewaters. This article investigated the prevalence and detection of antibiotic resistance genes in Staphylococcus species from clinical and environmental sources in Ile-Ife, Nigeria. Standard culture-based and molecular protocols were used. Seventy-six (27 clinical, 14 hospital effluent and 35 environmental) Staphylococcus isolates were recovered: 56.58% were coagulase-negative and 43.42% coagulase-positive (S. aureus). For the clinical isolates, 10, 6, 4, 4 and 1 were isolated from urine, skin, wounds, blood and pus, respectively. Isolates were resistant to methicillin and amoxycillin (91.7%), cloxacillin (88.0%), ciprofloxacin (84.0%), ofloxacin (83.3%), azithromycin (78.0%), ceftazidime (76.0%), gentamycin (75.0%), cefuroxime (75.0%) and erythromycin (72.0%). Nearly, all isolates (90.8%) had multiple antibiotic resistance (MAR) index >0.2. Overall MAR indices for Staphylococcus species isolated from the clinical, hospital effluent and environmental wastewaters were relatively similar (0.482; 0.500; 0.435). mecA, nuc and luk-pvl genes were detected in S. aureus, while mecA was detected in S. arlettae, S. sciuri, S. cohnii, S. epidermidis and S. saprophyticus. This study informs on the potential contamination of environmental waters downstream from hospitals and possible impacts that this could have on human and animal health.


2017 ◽  
Author(s):  
Benjamin J. Ridenhour ◽  
Genevieve A. Metzger ◽  
Michael France ◽  
Karol Gliniewicz ◽  
Jack Millstein ◽  
...  

ABSTRACTThe emergence and spread of antibiotic resistance is a crisis in health care today. Antibiotic resistance is often horizontally transferred to susceptible bacteria by means of multi-drug resistance plasmids that may or may not persist in the absence of antibiotics. Because bacterial pathogens often grow as biofilms, there is a need to better understand the evolution of plasmid persistence in these environments. Here we compared the evolution of plasmid persistence in the pathogen Acinetobacter baumannii when grown under antibiotic selection in biofilms versus well-mixed liquid cultures. After four weeks, clones in which the plasmid was more stably maintained in the absence of antibiotic selection were present in both populations. On average plasmid persistence increased more in liquid batch cultures, but variation in the degree of persistence was greater among biofilm-derived clones. The results of this study show for the first time that the persistence of MDR plasmids improves in biofilms.


Author(s):  
Sahar Munir ◽  
Syeda Hafsa Ali ◽  
Syeda Ayesha Ali

Foodborne diseases are increasing at an alarming rate, thereby eliciting constant threat to public health worldwide. Approximately, 200 foodborne cases are caused due to ingestion of contaminated food each year. In developing countries, unhygienic practices are main reasons for foodborne diseases. Precise estimate of population-based data on food borne illnessesare scarce in Pakistan. This review focuses to elucidate etiological cause of foodborne diseases dominant in Pakistan from 1990 to 2018. Various databases were searched, and 88 articles related to foodborne diseases were identified. Around 59 articles were included on quality assessment criteria. We determined dominant pathogens associated with foodborne diseases among all provinces of Pakistan. High numbers of foodborne diseases were reported in Sindh. Whereas, Salmonella was determined asprimary cause of foodborne ailments. Most of the reported data on antibiotic resistance was unavailable. Shagella spp were first reported for antibiotic resistance in 1990, and E. coli was reported for multi-drug resistance in 1998. Nevertheless, S. aureus was reported for Methicillinresistant in 2015-16. This study summarize various sources responsible forfood-borne illness, of which unhygienic conditions, poor sanitation systems, lack of proper infrastructure and continuous influx of refugees plays key role in escalation of morbidity rate in the region. We emphasize need of active surveillance system in reducing foodborne outbreaks in future and enable policy makers to set appropriate goals in food safety area. Keywords AFood control, drug resistance, food safety, Pakistan


Author(s):  
O. C. Adekunle ◽  
A. J. Falade- Fatila ◽  
R. Ojedele ◽  
G. Odewale

The emerging drug resistance, especially among the Escherichia coli (E.coli) isolates from pregnant women, spread rapidly within the community. Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in pregnant women. Also, multi-drug resistance is becoming rampant, and it is of serious public health concern. Treatment of E. coli is now a challenge due to continuous increase in resistance towards commonly prescribed antibiotics, thus posing a threat to treatment. Hence, the aim of the study is to determine antibiotic resistance genes in some multiple antibiotic resistant E.coli from apparently healthy pregnant women in Osun State. A cross-sectional study design was used to collect 150 mid-stream urine samples from apparently healthy pregnant women from March, 2018 to September, 2018. A well structured questionnaire and informed consent were used for data collection. Standard loop technique was used to place 0.001 ml of urine on Cysteine Lactose Electrolyte Deficient (CLED) medium, Blood agar, MacConkey agar and incubated at 37 °C for 24 h. A standard agar disc diffusion method was used to determine antimicrobial susceptibility pattern of the isolates. The molecular detection of the resistant genes was done using PCR techniques. The ages of women enrolled in this study ranges from 22 to 42 years (mean ± standard deviation = 31 ± 4.7 years). Escherichia coli showed high percentage of resistance to ampicillin and low resistance to ciprofloxacin and penicillin. All the E. coli isolates were sensitive to levofloxacin, and most were resistant to Meropenem. Multiple drug resistance was observed in all the isolates. Resistance genes in VIM 390bp, bla ctx-M 585bp and TEM 517bp were detected in some of the representative E. coli isolates profiled. This study identified the presence of Multi-drug resistance genes in E. coli associated UTI among pregnant women in Osogbo.


2019 ◽  
Author(s):  
Alvaro Banderas ◽  
Arthur Carcano ◽  
Elisa Sina ◽  
Shuang Li ◽  
Ariel B. Lindner

AbstractPlasmid-mediated horizontal gene transfer of antibiotic-resistance and virulence in pathogenic bacteria underlies a major public health issue. Understanding how, in the absence of antibiotic-mediated selection, plasmid-bearing cells avoid being outnumbered by plasmid-free cells, is key to developing counter strategies. Here we quantified the induction of Enterococcus faecalis’ plasmidial sex-pheromone pathway to show that the integration of the stimulatory (mate-sensing) and inhibitory (self-sensing) signaling modules from the pCF10 conjugative plasmid, provides a precise measure of the recipient-to-donor ratio, agnostic to variations in population size. Such ratiometric control of conjugation favors vertical plasmid-transfer under low mating likelihood and allows activation of conjugation functions only under high mating likelihood. We further show that this strategy constitutes a cost-effective investment into mating effort, as overstimulation produces unproductive self-aggregation and reductions in the growth rate. A mathematical model suggests that ratiometric control of conjugation limits the spread of antibiotic resistance in absence of antibiotics, predicting a long-term stable co-existence of donors and recipients. Our results demonstrate how population-level parameters can control transfer of antibiotic-resistance in bacteria, opening the door for biotic control strategies. Ratiometric sensing in bacteria mirrors sexual behaviors observed in eukaryotes.


2020 ◽  
Author(s):  
Guo Liang Gan ◽  
Matthew Nguyen ◽  
Elijah Willie ◽  
Brian Lee ◽  
Cedric Chauve ◽  
...  

AbstractThe efficacy of antibiotic drug treatments in tuberculosis (TB) is significantly threatened by the development of drug resistance. There is a need for a robust diagnostic system that can accurately predict drug resistance in patients. In recent years, researchers have been taking advantage of whole-genome sequencing (WGS) data to infer antibiotic resistance. In this work we investigate the power of machine learning tools in inferring drug resistance from WGS data on three distinct datasets differing in their geographical diversity.We analyzed data from the Relational Sequencing TB Data Platform, which comprises global isolates from 32 different countries, the PATRIC database, containing isolates contributed by researchers around the world, and isolates collected by the British Columbia Centre for Disease Control in Canada. We predicted drug resistance to the first-line drugs: isoniazid, rifampicin, ethambutol, pyrazinamide, and streptomycin. We focused on the genes which previous evidence suggests are involved in drug resistance in TB.We called single-nucleotide polymorphisms using the Snippy pipeline, then applied different machine learning models. Following best practices, we chose the best parameters for each model via cross-validation on the training set and evaluated the performance via the sensitivity-specificity tradeoffs on the testing set.To the best of our knowledge, our study is the first to predict antibiotic resistance in TB across multiple datasets. We obtained a performance comparable to that seen in previous studies, but observed that performance may be negatively affected when training on one dataset and testing on another, suggesting the importance of geographical heterogeneity in drug resistance predictions. In addition, we investigated the importance of each gene within each model, and recapitulated some previously known biology of drug resistance. This study paves the way for further investigations, with the ultimate goal of creating an accurate, interpretable and globally generalizable model for predicting drug resistance in TB.Author summaryDrug resistance in pathogenic bacteria such as Mycobacterium tuberculosis can be predicted by an application of machine learning models to next-generation sequencing data. The received wisdom is that following standard protocols for training commonly used machine learning models should produce accurate drug resistance predictions.In this paper, we propose an important caveat to this idea. Specifically, we show that considering geographical diversity is critical for making accurate predictions, and that different geographic regions may have disparate drug resistance mechanisms that are predominant. By comparing the results within and across a regional dataset and two international datasets, we show that model performance may vary dramatically between settings.In addition, we propose a new method for extracting the most important variants responsible for predicting resistance to each first-line drug, and show that it is to recapitulate a large amount of what is known about the biology of drug resistance in Mycobacterium tuberculosis.


2020 ◽  
Author(s):  
Wesley Loftie-Eaton ◽  
Angela Crabtree ◽  
David Perry ◽  
Jack Millstein ◽  
Barrie Robinson ◽  
...  

AbstractBy characterizing the trajectories of antibiotic resistance gene transfer in bacterial communities such as the gut microbiome, we will better understand the factors that influence this spread of resistance. Our aim was to investigate the host network of a multi-drug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish. This was done through in vitro and in vivo conjugation experiments with Escherichia coli as donor of the plasmid pB10::gfp. When this donor was mixed with the extracted gut microbiome, only transconjugants of Aeromonas veronii were detected. In separate matings between the same donor and four prominent isolates from the gut microbiome, the plasmid transferred to two of these four isolates, A. veronii and Plesiomonas shigelloides, but not to Shewanella putrefaciens and Vibrio mimicus. When these A. veronii and P. shigelloides transconjugants were the donors in matings with the same four isolates, the plasmid now also transferred from A. veronii to S. putrefaciens. P. shigelloides was unable to donate the plasmid and V. mimicus was unable to acquire it. Finally, when the E. coli donor was added in vivo to zebrafish through their food, plasmid transfer was observed in the gut but only to Achromobacter sp., a rare member of the gut microbiome. This work shows that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome depends on the donor-recipient species combinations and therefore their spatial arrangement. It also suggests that rare gut microbiome members should not be ignored as potential reservoirs of multi-drug resistance plasmids from food.ImportanceTo understand how antibiotic resistance plasmids end up in human pathogens it is crucial to learn how, where and when they are transferred and maintained in members of bacterial communities such as the gut microbiome. To gain insight into the network of plasmid-mediated antibiotic resistance sharing in the gut microbiome, we investigated the transferability and maintenance of a multi-drug resistance plasmid among the culturable bacteria of the zebrafish gut. We show that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome can depend on which species are involved, as some are important nodes in the plasmid-host network and others dead-ends. Our findings also suggest that rare gut microbiome members should not be ignored as potential reservoirs of multi-drug resistance plasmids from food.


2021 ◽  
Author(s):  
Juhi Singh ◽  
Rahul Raina ◽  
Kutti R. Vinothkumar ◽  
Ruchi Anand

AbstractMethylation of specific nucleotides is integral for ribosomal biogenesis and serves as a common way to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of 30S-KsgA by cryo-EM, a state was captured, where KsgA juxtaposes between helices h44 and h45, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, factors that direct the enzyme to its cognate site with high fidelity were unearthed by creating several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27 were mutated and evaluated for their methylation efficiency. The biochemical studies delineated specificity hotspots that enable KsgA to achieve an induced fit. This study enables the identification of distal exclusive allosteric pocket and other divergent structural elements in each rMTase, which can be exploited to develop strategies to reverse methylation, mediated drug resistance.


Sign in / Sign up

Export Citation Format

Share Document