scholarly journals Titanium Dioxide Nanoparticles – Prospects and Applications in Medicine

Author(s):  
Daniel Ziental ◽  
Beata Czarczynska-Goslinska ◽  
Dariusz T. Mlynarczyk ◽  
Arleta Glowacka-Sobotta ◽  
Beata Stanisz ◽  
...  

Metallic nanoparticles (NPs), among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in the novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. Titanium dioxide NPs were studied as photosensitizing agents in the treatment of malignant tumors as well as in photodynamic inactivation of antibiotic-resistant bacteria. Both TiO2 NPs themselves, as well as their composites with other molecules, can be successfully used as photosensitizers in PDT. Moreover, various organic compounds can be grafted on TiO2 NPs, leading to hybrid materials. These nanostructures can reveal increased light absorption allowing their further use in targeted therapy in medicine. In order to improve efficient anticancer therapy, many approaches utilizing titanium dioxide were tested. The most significant studies are discussed in this review.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 387 ◽  
Author(s):  
Daniel Ziental ◽  
Beata Czarczynska-Goslinska ◽  
Dariusz T. Mlynarczyk ◽  
Arleta Glowacka-Sobotta ◽  
Beata Stanisz ◽  
...  

Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. Titanium dioxide NPs were studied as photosensitizing agents in the treatment of malignant tumors as well as in photodynamic inactivation of antibiotic-resistant bacteria. Both TiO2 NPs themselves, as well as their composites and combinations with other molecules or biomolecules, can be successfully used as photosensitizers in PDT. Moreover, various organic compounds can be grafted on TiO2 nanoparticles, leading to hybrid materials. These nanostructures can reveal increased light absorption, allowing their further use in targeted therapy in medicine. In order to improve efficient anticancer and antimicrobial therapies, many approaches utilizing titanium dioxide were tested. Results of selected studies presenting the scope of potential uses are discussed in this review.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1078 ◽  
Author(s):  
Luigia Pezzi ◽  
Alfredo Pane ◽  
Ferdinanda Annesi ◽  
Maria Losso ◽  
Alexa Guglielmelli ◽  
...  

Antibiotic resistance refers to when microorganisms survive and grow in the presence of specific antibiotics, a phenomenon mainly related to the indiscriminate widespread use and abuse of antibiotics. In this framework, thanks to the design and fabrication of original functional nanomaterials, nanotechnology offers a powerful weapon against several diseases such as cancer and pathogenic illness. Smart nanomaterials, such as metallic nanoparticles and semiconductor nanocrystals, enable the realization of novel drug-free medical therapies for fighting against antibiotic-resistant bacteria. In the light of the latest developments, we highlight the outstanding capabilities of several nanotechnology-inspired approaches to kill antibiotic-resistant bacteria. Chemically functionalized silver and titanium dioxide nanoparticles have been employed for their intrinsic toxicity, which enables them to exhibit an antimicrobial activity while, in a different approach, photo-thermal properties of metallic nanoparticles have been theoretically studied and experimentally tested against several temperature sensitive (mesophilic) bacteria. We also show that it is possible to combine a highly localized targeting with a plasmonic-based heating therapy by properly functionalizing nanoparticle surfaces with covalently linked antibodies. As a perspective, the utilization of properly engineered and chemically functionalized nanomaterials opens a new roads for realizing antibiotic free treatments against pathogens and related diseases.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4090
Author(s):  
Morteza Sheikhalipour ◽  
Behrooz Esmaielpour ◽  
Gholamreza Gohari ◽  
Maryam Haghighi ◽  
Hessam Jafari ◽  
...  

High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.


Nanoscale ◽  
2020 ◽  
Author(s):  
Yanjun Gao ◽  
Tingyu Li ◽  
Shuming Duan ◽  
Lizhi Lv ◽  
Yuan Li ◽  
...  

Titanium dioxide nanoparticles (TiO2-NPs) is widely applicated as additives in foods for its excellent whitening and brightening capability. Although the toxicity and antibacterial activity of TiO2-NPs has been extensively studied,...


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581881218 ◽  
Author(s):  
Laila M. Fadda ◽  
Hanan Hagar ◽  
Azza M. Mohamed ◽  
Hanaa M. Ali

Titanium dioxide nanoparticles (TiO2-NPs) are extensively used in a wide range of applications; however, many reports have investigated their nanotoxicological effect at the molecular level either in vitro or in vivo systems. The defensive roles of quercetin (Qur) or idebenone (Id) against the hepatotoxicity induced by TiO2-NPs were evaluated in the current study. The results showed that the coadministration of Qur or Id to rats intoxicated with TiO2-NPs markedly ameliorated the elevation in hepatic malondialdehyde (MDA), serum alanine amino-transferase (ALT), glucose, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), immunoglobin G (IgG), and C-reactive protein (CRP) levels compared to their levels in TiO2-NPs-treated rats. The aforementioned antioxidants also effectively modulated the changes in the levels of serum vascular endothelial growth factor (VEGF), nitric oxide (NO), hepatic DNA breakage, caspase-3, and inhibition of drug metabolizing enzymes (cytochrome P450s; CYP4502E12E1) in rat livers induced by TiO2-NPs toxicity. The histopathological examination of the liver section showed that TiO2-NPs caused severe degeneration of most hepatocytes with an increase in collagen in the portal region, while treatment with the antioxidants in question improved liver architecture. These outcomes supported the use of Qur and Id as protective agents against the hepatotoxicity induced by TiO2-NPs and other hepatotoxic drugs.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1044
Author(s):  
Bahman Khameneh ◽  
N. A. Michael Eskin ◽  
Milad Iranshahy ◽  
Bibi Sedigheh Fazly Bazzaz

The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Pardon Nyamukamba ◽  
Omobola Okoh ◽  
Lilian Tichagwa ◽  
Corinne Greyling

Herein, we describe the synthesis of titanium dioxide (TiO2) nanoparticles by the hydrolysis and condensation of titanium tetrachloride. The resulting nanoparticles were immobilized on polyacrylonitrile (PAN) based nanofibres by an electrospinning technique in order to allow simple isolation and reuse of titania semiconductor photocatalyst. The composite nanofibres were heat treated to convert the polymer nanofibres to carbon nanofibres and to convert amorphous TiO2to crystalline TiO2. X-ray diffraction (XRD) analysis showed that the rutile phase was the major phase and the equatorial peaks of PAN disappeared after heat treatment at 600°C. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis confirmed that some TiO2nanoparticles were encapsulated whereas some were surface residing on the electrospun nanofibres. The TiO2nanoparticles were found to lower the cyclization temperature of PAN as indicated by differential scanning colorimetry (DSC) and differential thermal analysis (DTA). Photocatalytic studies on the degradation of methyl orange dye under UV light irradiation showed that composite nanofibres were capable of degrading organic contaminants in water. The carbon nanofibres with surface residing titanium dioxide nanoparticles (TiO2/CNF-SR) showed the highest photocatalytic activity (59.35% after 210 minutes) due to direct contact between the TiO2photocatalyst and methyl orange.


Author(s):  
Wei Zhang ◽  
Jinghua Long ◽  
Jianmin Geng ◽  
Jie Li ◽  
Zhongyi Wei

The impact of engineered nanoparticles (ENPs) on the migration and toxicity of coexisting pollutants is still unclear, especially in soil media. This study aims to evaluate the impact of titanium dioxide nanoparticles (TiO2 NPs) on the phytotoxicity of cadmium (Cd) to Oryza sativa L., and the migration of cadmium (Cd) in the soil-rice system. Three different Cd stress groups (C1 group: 1.0 mg kg−1, C2 group: 2.5 mg kg−1 and C3 group: 5.0 mg kg−1) were set in the pot experiment, and the target concentration of TiO2 NPs in each group were 0 mg kg−1 (T0), 50 mg kg−1 (T1), 100 mg kg−1 (T2) and 500 mg kg−1 (T3). Plant height and biomass decreased with the increasing of Cd content in paddy soil. TiO2 NPs could lower the phytotoxicity of Cd in terms of the changes in the morphological and biochemical characteristics, especially in the tillering and booting stage. In the tillering stage, TiO2 NPs addition caused a significant increase in plant height, biomass and the total chlorophyll content in the leaves of Oryza saliva L. In the booting stage, TiO2 NPs addition caused a 15% to 32% and 24% to 48% reduction of malondialdehyde (MDA) content for the C2 and C3 group, respectively, compared to that of the respective control treatment (T0). TiO2-NPs addition reduced the activity of peroxidase (POD) in the leaves in the booting and heading stage, and the activity of catalase (CAT) in the tillering stage. In the C1 and C2 group, the grain Cd content in the 100 and 500 mg kg−1 TiO2 NPs treatments reached 0.47–0.84 mg kg−1, obviously higher than that of the treatment without TiO2 NPs (0.27–0.32 mg kg−1), suggesting that TiO2-NPs could promote Cd migration in the soil-rice system.


Sign in / Sign up

Export Citation Format

Share Document