scholarly journals COVID-19 Contact Tracing: Challenges and Future Directions

Author(s):  
Mohammad Jabed Morshed Chowdhury ◽  
Md Sadek Ferdous ◽  
Kamanashis Biswas ◽  
Niaz Chowdhury ◽  
Vallipuram Muthukkumarasamy

Contact tracing has become a vital tool for public health officials to effectively combat the spread of new diseases, such asthe novel coronavirus disease COVID-19. Contact tracing is not new to epidemiologist rather, it used manual or semi-manualapproaches that are incredibly time-consuming, costly and inefficient. It mostly relies on human memory while scalabilityis a significant challenge in tackling pandemics. The unprecedented health and socio-economic impacts led researchersand practitioners around the world to search for technology-based approaches for providing scalable and timely answers.Smartphones and associated digital technologies have the potential to provide a better approach due to their high level ofpenetration, coupled with mobility. While data-driven solutions are extremely powerful, the fear among citizens is thatinformation like location or proximity associated with other personal data and can be weaponised by the states to enforcesurveillance. Low adoption rate of such apps due to the lack of trust questioned the efficacy and demanded researchers tofind innovative solution for building digital-trust, and appropriately balancing privacy and accuracy of data. In this paper,we have critically reviewed such protocols and apps to identify the strength and weakness of each approach. Finally, wehave penned down our recommendations to make the future contact tracing mechanisms more universally inter-operable andprivacy-preserving.

Author(s):  
Mohammad Jabed Morshed Chowdhury ◽  
Md Sadek Ferdous ◽  
Kamanashis Biswas ◽  
Niaz Chowdhury ◽  
Vallipuram Muthukkumarasamy

Contact tracing has become a key tool for public health officials to effectively combat the spread of new diseases, such as the Covid-19 pandemic. Currently, this process is either manual or semi-manual and often very time consuming and inefficient. It largely relies of human memory and cannot be scalable to tackle pandemic like COVID-19. Researchers and practitioners around the world have turned into the technology based approaches to provide a scalable solution. Smartphone and associated digital technologies have the potential to provide a better solution due to its high level of penetration coupled with mobility. However, information like location or proximity associated with other personal data are very sensitive private information and can be used by the states to do surveillance over their citizen. Researchers have proposed different contact tracing protocols to overcome or limit those concerns. In this paper, we have critically reviewed these protocols and apps to identify the strength and weakness of each approaches. Finally, we have pen down our recommendations to make contact tracing mechanism more universally inter-operable and privacy preserving.


2020 ◽  
pp. 174569162097820
Author(s):  
Maryanne Garry ◽  
Lorraine Hope ◽  
Rachel Zajac ◽  
Ayesha J. Verrall ◽  
Jamie M. Robertson

In the battle for control of coronavirus disease-19 (COVID-19), we have few weapons. Yet contact tracing is among the most powerful. Contact tracing is the process by which public-health officials identify people, or contacts, who have been exposed to a person infected with a pathogen or another hazard. For all its power, though, contact tracing yields a variable level of success. One reason is that contact tracing’s ability to break the chain of transmission is only as effective as the proportion of contacts who are actually traced. In part, this proportion turns on the quality of the information that infected people provide, which makes human memory a crucial part of the efficacy of contact tracing. Yet the fallibilities of memory, and the challenges associated with gathering reliable information from memory, have been grossly underestimated by those charged with gathering it. We review the research on witnesses and investigative interviewing, identifying interrelated challenges that parallel those in contact tracing, as well as approaches for addressing those challenges.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Abdul Majeed ◽  
Seong Oun Hwang

This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.


Author(s):  
Parisa Kordjamshidi ◽  
Dan Roth ◽  
Kristian Kersting

Data-driven approaches are becoming dominant problem-solving techniques in many areas of research and industry. Unfortunately, current technologies do not make such techniques easy to use for application experts who are not fluent in machine learning nor for machine learning experts who aim at testing ideas on real-world data and need to evaluate those as a part of an end-to-end system. We review key efforts made by various AI communities to provide languages for high-level abstractions over learning and reasoning techniques needed for designing complex AI systems. We classify the existing frameworks based on the type of techniques as well as the data and knowledge representations they use, provide a comparative study of the way they address the challenges of programming real-world applications, and highlight some shortcomings and future directions.


2021 ◽  
Vol 3 ◽  
Author(s):  
Wanshu Cong

Current debates over digital contact tracing mainly focus on the tools and experiences in the West. China’s health code, while often seen as one of the earliest and most widely adopted apps since the outbreak of COVID-19, has not been studied specifically. This article provides a detailed analysis of the health code, draws comparison with the contact tracing apps developed by Google and Apple, and seeks to understand the specifications and contradictions internal to the health code’s development and deployment in China. Looking at both technical features and the mode and process of its adoption, the article argues that the health code is strictly speaking not a contact tracing tool, but a technology of population control which is integrated in traditional forms of control and facilitates the enhancement of such control. As a technology of ruling the population, rather than the virus as such, the health code also reveals crucial problems in the modernization and informatization of the state governance and public administration. A critique on the health code solely informed by privacy and personal data protection runs the risk of being co-opted by the government and technology companies deploying such tools to expand their surveillance and regulatory power.


2020 ◽  
Author(s):  
Helmi Zakariah ◽  
Fadzilah bt Kamaluddin ◽  
Choo-Yee Ting ◽  
Hui-Jia Yee ◽  
Shereen Allaham ◽  
...  

UNSTRUCTURED The current outbreak of coronavirus disease 2019 (COVID-19) caused by the novel coronavirus named SARS-CoV-2 has been a major global public health problem threatening many countries and territories. Mathematical modelling is one of the non-pharmaceutical public health measures that plays a crucial role for mitigating the risk and impact of the pandemic. A group of researchers and epidemiologists have developed a machine learning-powered inherent risk of contagion (IRC) analytical framework to georeference the COVID-19 with an operational platform to plan response & execute mitigation activities. This framework dataset provides a coherent picture to track and predict the COVID-19 epidemic post lockdown by piecing together preliminary data on publicly available health statistic metrics alongside the area of reported cases, drivers, vulnerable population, and number of premises that are suspected to become a transmission area between drivers and vulnerable population. The main aim of this new analytical framework is to measure the IRC and provide georeferenced data to protect the health system, aid contact tracing, and prioritise the vulnerable.


2021 ◽  
Vol 11 (10) ◽  
pp. 4537
Author(s):  
Christian Delgado-von-Eitzen ◽  
Luis Anido-Rifón ◽  
Manuel J. Fernández-Iglesias

Blockchain technologies are awakening in recent years the interest of different actors in various sectors and, among them, the education field, which is studying the application of these technologies to improve information traceability, accountability, and integrity, while guaranteeing its privacy, transparency, robustness, trustworthiness, and authenticity. Different interesting proposals and projects were launched and are currently being developed. Nevertheless, there are still issues not adequately addressed, such as scalability, privacy, and compliance with international regulations such as the General Data Protection Regulation in Europe. This paper analyzes the application of blockchain technologies and related challenges to issue and verify educational data and proposes an innovative solution to tackle them. The proposed model supports the issuance, storage, and verification of different types of academic information, both formal and informal, and complies with applicable regulations, protecting the privacy of users’ personal data. This proposal also addresses the scalability challenges and paves the way for a global academic certification system.


Author(s):  
H.V. Jagadish ◽  
Julia Stoyanovich ◽  
Bill Howe

The COVID-19 pandemic is compelling us to make crucial data-driven decisions quickly, bringing together diverse and unreliable sources of information without the usual quality control mechanisms we may employ. These decisions are consequential at multiple levels: they can inform local, state and national government policy, be used to schedule access to physical resources such as elevators and workspaces within an organization, and inform contact tracing and quarantine actions for individuals. In all these cases, significant inequities are likely to arise, and to be propagated and reinforced by data-driven decision systems. In this article, we propose a framework, called FIDES, for surfacing and reasoning about data equity in these systems.


Author(s):  
Xiaoling Luo ◽  
Adrian Cottam ◽  
Yao-Jan Wu ◽  
Yangsheng Jiang

Trip purpose information plays a significant role in transportation systems. Existing trip purpose information is traditionally collected through human observation. This manual process requires many personnel and a large amount of resources. Because of this high cost, automated trip purpose estimation is more attractive from a data-driven perspective, as it could improve the efficiency of processes and save time. Therefore, a hybrid-data approach using taxi operations data and point-of-interest (POI) data to estimate trip purposes was developed in this research. POI data, an emerging data source, was incorporated because it provides a wealth of additional information for trip purpose estimation. POI data, an open dataset, has the added benefit of being readily accessible from online platforms. Several techniques were developed and compared to incorporate this POI data into the hybrid-data approach to achieve a high level of accuracy. To evaluate the performance of the approach, data from Chengdu, China, were used. The results show that the incorporation of POI information increases the average accuracy of trip purpose estimation by 28% compared with trip purpose estimation not using the POI data. These results indicate that the additional trip attributes provided by POI data can increase the accuracy of trip purpose estimation.


2021 ◽  
pp. 0272989X2110030
Author(s):  
Serin Lee ◽  
Zelda B. Zabinsky ◽  
Judith N. Wasserheit ◽  
Stephen M. Kofsky ◽  
Shan Liu

As the novel coronavirus (COVID-19) pandemic continues to expand, policymakers are striving to balance the combinations of nonpharmaceutical interventions (NPIs) to keep people safe and minimize social disruptions. We developed and calibrated an agent-based simulation to model COVID-19 outbreaks in the greater Seattle area. The model simulated NPIs, including social distancing, face mask use, school closure, testing, and contact tracing with variable compliance and effectiveness to identify optimal NPI combinations that can control the spread of the virus in a large urban area. Results highlight the importance of at least 75% face mask use to relax social distancing and school closure measures while keeping infections low. It is important to relax NPIs cautiously during vaccine rollout in 2021.


Sign in / Sign up

Export Citation Format

Share Document