scholarly journals Measurements of Thickness for Metallic Plates with Co-Axial Holes Using a Novel Analytical Method with the Modified Integration Range

Author(s):  
Wuliang Yin ◽  
Ruochen Huang ◽  
Mingyang Lu ◽  
Zhijie Zhang ◽  
Anthony Peyton

The existence of the hole on a plate affects the calculation of eddy current problems. Consequently, the accuracy for the prediction of the material properties decreases if the effect of the hole is not taken into account. In this paper, a novel analytical method based on the modified integration range is proposed which can address the presence of the hole. Due to the presence of the hole, the conventional Dodd-Deeds analytical solution cannot be used to calculate the inductance change. Therefore, a revised upper integration limit is introduced to replace the original limit -- ∞ when using the co-axially air-core electromagnetic sensor. With the presence of the hole, the magnitude of the received signal reduces, and the peak frequency feature changes. The analytical method is validated by measured and numerical simulation results. It is found that the upper limit is related to the radius of the open hole. With the new technique, the thickness of sample plates with holes can be estimated based on the peak frequency feature.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


Author(s):  
Michael M. Tiller ◽  
Jonathan A. Dantzig

Abstract In this paper we discuss the design of an object-oriented framework for simulation and optimization. Although oriented around high-level problem solving, the framework defines several classes of problems and includes concrete implementations of common algorithms for solving these problems. Simulations are run by combining these algorithms, as needed, for a particular problem. Included in this framework is the capability to compute the sensitivity of simulation results to the different simulation parameters (e.g. material properties, boundary conditions, etc). This sensitivity information is valuable in performing optimization because it allows the use of gradient-based optimization algorithms. Also included in the system are many useful abstractions and implementations related to the finite element method.


2014 ◽  
Vol 641-642 ◽  
pp. 179-182 ◽  
Author(s):  
Jin Liang Chen

Through grey estimation of the parameters of logistic equation, a grey logistic forecasting model is established. The effective irrigation area in Liaoning Province was simulated by the model. The simulation results had good agreement with the available data, with a correlation of 0.95. The effective irrigation area was predicted to be 1.583 million hectares in 2018, very close to the predicted upper limit of 1.588 million hectares. Thus, there is little potential for the development of the effective irrigation area, rendering the structural adjustment of agricultural resources very necessary.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. J. Plotnikov ◽  
A. V. Kulikov ◽  
V. E. Strigalev ◽  
I. K. Meshkovsky

The dependence of the dynamic range of the phase generated carrier (PGC) technique on low-pass filters passbands is investigated using a simulation model. A nonlinear character of this dependence, which could lead to dynamic range limitations or measurement uncertainty, is presented for the first time. A detailed theoretical analysis is provided to verify the simulation results and these results are consistent with performed calculations. The method for the calculation of low-pass filters passbands according to the required dynamic range upper limit is proposed.


2016 ◽  
Vol 254 ◽  
pp. 49-54 ◽  
Author(s):  
Dan Andrei Şerban ◽  
Emanoil Linul ◽  
Sorin Sărăndan ◽  
Liviu Marşavina

This work presents the design of a parametric Kelvin structure in which the relative density of the geometry can be varied by adjusting three parameters: cell diameter, cell wall thickness and cell chamfer radius, the structure consistsing of a tessellation of hollow truncated octahedral. The developed model was evaluated in terms of compressive stiffness for the case of a rigid polyurethane foam of 0.256 relative density. Three models were analyzed in order to determine the influence of geometric characteristics on mechanical properties: a model that presented no chamfer a model that presented a medium-sized chamfer and a model that presented a large chamfer. A mesh convergence study was performed which analyzed the results in terms of accuracy and time expenses for three element sizes for both linear and quadratic elements. Due to the orthotropic nature of the model, its response on both possible loading directions was investigated. Simulation results were compared with experimental results and yielded accurate results for one loading direction, when using the material properties for solid polyurethane described in literature.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Bau-Jy Liang ◽  
Don-Gey Liu ◽  
Chia-Hung Yeh ◽  
Hsiao-Chun Chen ◽  
Yu-Chen Fang ◽  
...  

AbstractIn this paper, an accurate 3-dimensional (3-D) analytical solution is proposed to calculate the projective capacitances of touch panels. In this study, both simple and complex patterns were investigated for the calculation. We propose a partition strategy to divide a pattern into many rectangular or triangular sub-patterns. Each sub-pattern can be further cut into 2-D slices. The capacitance of a 2-D slice was then solved by our closed-form formulae. The total capacitance of a pattern was obtained by integrating up all the partial capacitances of the slices. In this study, the precision of our analytical method was examined by comparing the simulation results obtained from Q3D


2019 ◽  
Vol 6 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Tushar Gajjar ◽  
Dhaval B. Shah ◽  
S. J. Joshi ◽  
K. M. Patel

AbstractThe angular deformation is key parameter in composite manufacturing for curvature surfaces. Process Induced Distortions (PID’s) are a major problem while manufacturing a composite part using autoclave process. Spring-back or spring-in is one of the PID in autoclave process. Spring-in effect either increase or decrease at angled section during curing of composite laminates. In this paper, L-shaped composite part has been manufactured using autoclave process. The material properties like glass transition temperature, heat reaction, crystallization temperature, Coefficient of Thermal Expansion have been measured for the cured component by using various testing techniques. Spring-in angle has been found for various number of layers and layup orientation. The simulation has been performed in ABAQUS software along with the COMPRO plug-in for each component. The variation of spring-in angle has been observed with changing material properties. The experimental results have been compared with simulation results. The percentage variation of spring-in deformation for experimental and simulation results has been found in the range of 5-7%.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 7
Author(s):  
Amish Kumar Jha ◽  
Bharti Gupta Gupta ◽  
Preety D Swami

This paper presents an investigation of effect of substrate material properties on the performance of antenna. The simulations are tested for 30 different dielectric materials on the basic RPA antenna model as well as on the most common U shape model using CST Microwave Studio. Two designs are proposed. On the basis of simulation results it has been concluded that for the first design the best material is which has a dielectric constant of 2.7 (𝜀r = 2.7) with bandwidth improvements of around 69.33% to 88.6% as compared to the most frequently used materials at present. For the second design the best result is obtained for the material that has dielectric constant in the range 2.0 to 2.7.  For a material having dielectric constant of 2.1 (𝜀r = 2.1) bandwidth improvement of around 11.74% with respect to RT Duroid was observed. For the second design, radiations from all other materials were not available in the working frequency range of 1GHz to 6GHz.  


Author(s):  
J. K. Phadikar ◽  
T. A. Bogetti ◽  
A. M. Karlsson

Sensitivity to experimental errors determines the reliability and usefulness of any experimental investigation. Thus, it is important to understand how various test techniques are affected by expected experimental errors. Here, a semi-analytical method based on the concept of condition number is explored for systematic investigation of the sensitivity of spherical indentation to experimental errors. The method is employed to investigate the reliability of various possible spherical indentation protocols, providing a ranking of the selected data reduction protocols from least to most sensitive to experimental errors. Explicit Monte Carlo sensitivity analysis is employed to provide further insight of selected protocol, supporting the ranking. The results suggest that the proposed method for estimating the sensitivity to experimental errors is a useful tool. Moreover, in the case of spherical indentation, the experimental errors must be very small to give reliable material properties.


Sign in / Sign up

Export Citation Format

Share Document