scholarly journals A Computational Method Involving Surface Area to Volume Ratio to Estimate Inorganic Nanoparticle Efficacy

Author(s):  
Wesley A. Williams ◽  
Ashley J. Denslow ◽  
Peter W. Radulovic ◽  
Daniel J. Denmark ◽  
Shyam S. Mohapatra

Inorganic nanoparticles are utilized for therapeutic, diagnostic, or in combination, theranostic purposes. The latter involves simultaneous sensing, imaging, or tracking of drug delivery. Furthermore, these nanoparticles can differ in their morphologies, which affect outcomes such as the effectiveness of hyperthermia, induction, drug loading, circulation time by escaping the body's immune system, imaging modality clarity, and biosensing. However, design of these theranostics is limited by the lack of a method to predict their therapeutic efficacy. Herein, we report a simple and novel computational approach via algebraic and geometric calculations of surface area (SA) to volume (V) ratios (SA:V) which can help predict the efficacy of the inorganic nanoparticles of the investigated morphologies. The approach comprises a coding platform for the program and uses Python 3 on a Windows 10 operating system. Analyses of 29 polyhedral morphologies that inorganic nanoparticles could assume ex silico showed that only particular concave and convex morphologies in this size regime are more productive over the standard sizes as well as a few noted in literature for baseline comparison. Our results provide a method that can aid in predicting the efficacy of inorganic nanoparticles with certain morphology giving rise to their fundamental basis and eventual implementation ex silico.

Author(s):  
Wesley A. Williams ◽  
Ashley J. Denslow ◽  
Peter W. Radulovic ◽  
Daniel J. Denmark ◽  
Shyam S. Mohapatra

Inorganic nanoparticles are utilized for therapeutic, diagnostic, or theranostic purposes and the latter involve simultaneous sensing, imaging, or tracking of drug delivery. Further, these nanoparticles differ in their morphologies, which affect outcomes such as the effectiveness of hyperthermia, induction, drug loading, circulation time by escaping the body's immune system, imaging modality clarity, and biosensing. However, design of these theranostics is limited by the lack of a method to predict their therapeutic efficacy. Herein, we report a computational approach involving the surface area (SA) to volume (V) ratios (SA:V), which can help predict the efficacy of the inorganic nanoparticles. The approach comprises a coding platform for the comparator pro-gram and uses a Python 3 on a Windows 10 operating system. Analyses of 22 polyhedral morphologies that inorganic nanoparticles could assume ex silico showed that only particular concave morphologies in this size regime are more productive over the standard sizes. Our results provide a method that can aid in the predicting efficacy of inorganic nanoparticles with certain morphology.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1621
Author(s):  
Beini Zeng ◽  
Xungai Wang ◽  
Nolene Byrne

Cellulose beads were successfully prepared from waste denim using a dissolution-regeneration approach with ionic liquids as the dissolving solvent. Cellulose beads with different morphologies were achieved by altering the dissolving and coagulating solvents. The morphological differences were quantified by N2 physisorption. The impact of morphology on the cellulose beads’ potential application was investigated in the context of drug loading and release. The results show that the fibrous morphology showed a better loading capacity than the globular analogue due to its higher surface area and pore volume.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ozge Esim ◽  
Canan Hascicek

: Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuously differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1605 ◽  
Author(s):  
Xavier Montané ◽  
Anna Bajek ◽  
Krzysztof Roszkowski ◽  
Josep M. Montornés ◽  
Marta Giamberini ◽  
...  

The current rapid advancement of numerous nanotechnology tools is being employed in treatment of many terminal diseases such as cancer. Nanocapsules (NCs) containing an anti-cancer drug offer a very promising alternative to conventional treatments, mostly due to their targeted delivery and precise action, and thereby they can be used in distinct applications: as biosensors or in medical imaging, allowing for cancer detection as well as agents/carriers in targeted drug delivery. The possibility of using different systems—inorganic nanoparticles, dendrimers, proteins, polymeric micelles, liposomes, carbon nanotubes (CNTs), quantum dots (QDs), biopolymeric nanoparticles and their combinations—offers multiple benefits to early cancer detection as well as controlled drug delivery to specific locations. This review focused on the key and recent progress in the encapsulation of anticancer drugs that include methods of preparation, drug loading and drug release mechanism on the presented nanosystems. Furthermore, the future directions in applications of various nanoparticles are highlighted.


2014 ◽  
Vol 58 (8) ◽  
pp. 4855-4865 ◽  
Author(s):  
Cameron Ball ◽  
Kim A. Woodrow

ABSTRACTThe development of topical anti-human immunodeficiency virus (HIV) microbicides may provide women with strategies to protect themselves against sexual HIV transmission. Pericoital drug delivery systems intended for use immediately before sex, such as microbicide gels, must deliver high drug doses for maximal effectiveness. The goal of achieving a high antiretroviral dose is complicated by the need to simultaneously retain the dose and quickly release drug compounds into the tissue. For drugs with limited solubility in vaginal gels, increasing the gel volume to increase the dose can result in leakage. While solid dosage forms like films and tablets increase retention, they often require more than 15 min to fully dissolve, potentially increasing the risk of inducing epithelial abrasions during sex. Here, we demonstrate that water-soluble electrospun fibers, with their high surface area-to-volume ratio and ability to disperse antiretrovirals, can serve as an alternative solid dosage form for microbicides requiring both high drug loading and rapid hydration. We formulated maraviroc at up to 28 wt% into electrospun solid dispersions made from either polyvinylpyrrolidone or poly(ethylene oxide) nanofibers or microfibers and investigated the role of drug loading, distribution, and crystallinity in determining drug release rates into aqueous media. We show here that water-soluble electrospun materials can rapidly release maraviroc upon contact with moisture and that drug delivery is faster (less than 6 min under sink conditions) when maraviroc is electrospun in polyvinylpyrrolidone fibers containing an excipient wetting agent. These materials offer an alternative dosage form to current pericoital microbicides.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sagar Rayamajhi ◽  
Sarah Wilson ◽  
Santosh Aryal ◽  
Robert DeLong

AbstractFePO4 NPs are of special interest in food fortification and biomedical imaging because of their biocompatibility, high bioavailability, magnetic property, and superior sensory performance that do not cause adverse organoleptic effects. These characteristics are desirable in drug delivery as well. Here, we explored the FePO4 nanoparticles as a delivery vehicle for the anticancer drug, doxorubicin, with an optimum drug loading of 26.81% ± 1.0%. This loading further enforces the formation of Fe3+ doxorubicin complex resulting in the formation of FePO4-DOX nanoparticles. FePO4-DOX nanoparticles showed a good size homogeneity and concentration-dependent biocompatibility, with over 70% biocompatibility up to 80 µg/mL concentration. Importantly, cytotoxicity analysis showed that Fe3+ complexation with DOX in FePO4-DOX NPs enhanced the cytotoxicity by around 10 times than free DOX and improved the selectivity toward cancer cells. Furthermore, FePO4 NPs temperature-stabilize RNA and support mRNA translation activity showing promises for RNA stabilizing agents. The results show the biocompatibility of iron-based inorganic nanoparticles, their drug and RNA loading, stabilization, and delivery activity with potential ramifications for food fortification and drug/RNA delivery.


2021 ◽  
Vol 16 (1) ◽  
pp. 040-061
Author(s):  
Shailesh D Ghaywat ◽  
Pooja S Mate ◽  
Yogesh M Parsutkar ◽  
Ashwini D Chandimeshram ◽  
Milind J Umekar

Nanogel have emerged as a versatile drug delivery system for encapsulation of guest molecules. A nanoparticle which is composed of hydrophilic polymer network known as Nanogel having range from 100-200nm. Nanogel have swellable and degradation properties with high drug loading capacity, high stability, sustained and targetable manner, large surface area. Therefore, nanogel are more productive than conventional and micro-sized delivery. In recent year in the field of biotechnology nanogel were prominently used to deal with genetics, enzyme immobilization and protein synthesis. Moreover, it has productive asset for the development of novel therapeutic system in medicine. These are soft materials capable of holding small molecular biomacromolecules, therapeutics, and inorganic nanoparticles within their crosslinked networks, which allows them to find applications for therapy as well as imaging of a variety of disease conditions. These properties not only enhance the functionality of the carrier system but also help in overcoming many challenges associated with the delivery of cargo molecules. This review aims to highlight the distinct and unique capabilities of nanogels as carrier system, Synthesis of nanogels, Types of Physical and chemical crosslinked nanogels, Stimuli responsive behavior, In vivo behavior, Therapeutic drug carrier, marketed formulation of Nanogels and the last part of review summarizes the applications of nanogels in various diseases. Transdermal drug delivery, diabetes, anti-inflammatory, vaginal drug delivery, neurodegenerative diseases, ocular dieses, autoimmune disease, and anticancer treatment for specially targeting the cancer cells, thereby reducing uptake into healthy cells. This nanogel drug delivery is a phenomenal system, and further depth study is required to explore their interaction at cellular and molecular levels and minimize the challenges.


2019 ◽  
Vol 12 (4) ◽  
pp. 232-239
Author(s):  
Shahad Faiz Hameed ◽  
Salih A. Rushdi

Activated carbon is a porous material that has a great character to be used for drug delivery system as carrier.It is agreed that drug carriers maintain the concentration of drugs within the required range for a long period of time and undetermined toxicity resulting from the use of overdoses , the ability to direct the drug to the affected area, immunity, biophysics, and drug efficacy. activated carbon was used in two different particle sizes (0.6µm size with surface area 544.4704 m2/g and 11.042 nm size with surface area 985.6013m2/g ) and Naproxen was used as a drug model. In this research study the effect of the number of parameters, including particle size, weight of drug to carrier weight ratio, on drug loading and temperature, time ,PH solution on mass transfer coefficient in unloading drug. the result of experiments was find that maximum loading efficiency obtain  when the particle size of activated carbon was in Nano. size and the ratio of weight drug to AC weight was 1.5. The unloading process was studied by studying the mass transfer coefficient and knowing the effect of the variables on its value ,these variables are time and temperature in addition to the PH value of the solution. The highest value of the mass transfer coefficient was obtained at the beginning of the unloading time ,at temperature 37 co and at solution in PH 6.5 .


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Eleen Dayana Mohamed Isa ◽  
Haslina Ahmad ◽  
Mohd Basyaruddin Abdul Rahman

Optimization is a process utilized to discover the best condition to generate the best possible outcome. One of the common optimization method used in the field of chemistry is response surface methodology (RSM). This method consists of mathematical and statistical techniques which relate the responses with the variables of interest. There are many experimental designs in RSM, and one of the most common one is the Box-Behnken design (BBD). In this work, BBD was employed to analyze the main effects and interactions of the reaction temperature, amount of template, and amount of triethanolamine (TEA) on the two responses which are the surface area (SA) and particle size (PS) of ionic liquid templated mesoporous silica nanoparticles (MSNs). It was found that the SA and PS were fitted with linear and quadratic models, respectively. MSNs with the highest surface area (999.051 m2 g-1) was chosen for the application of drug delivery; thus, drug loading and drug release experiments were conducted. From these studies, it was found that 37% of drug (quercetin) was successfully encapsulated in MSN and, in 48 hours, 32% of the drug was released.


2019 ◽  
Vol 22 ◽  
pp. 313-331 ◽  
Author(s):  
Erick José Torres-Martinez ◽  
Graciela Lizeth Pérez-González ◽  
Aracely Serrano-Medina ◽  
Daniel Grande ◽  
Ricardo Vera-Graziano ◽  
...  

The electrospinning technique is a useful and versatile approach for conversion of polymeric solutions into continuous fibers, ranging from a few micrometers (10–100 μm) to the scale of nanometers (10–100 nm) in diameters. This technique can be used in a vast number of polymers, in some cases after modifying them to the required properties. The high surface-to-volume ratio of the fibers can improve some processes like cell binding and proliferation, drug loading, and mass transfer processes. One of the most important and studied areas of electrospinning is in the drug delivery field, for the controlled release of active substances ranging from antibiotics and anticancer agents, to macromolecules such as proteins and DNA. The advantage of this method is that a wide variety of low solubility drugs can be loaded into the fibers to improve their bioavailability or to attain controlled release. This review presents an overview of the reported drugs loaded into electrospun polymeric nanofibers to be used as drug delivery systems. These drugs are classified by their applications in pharmacy.


Sign in / Sign up

Export Citation Format

Share Document