scholarly journals Hyperactive Neutrophils Infiltrate Vital Organs of Tumor Bearing Host and Contribute to Gradual Systemic Deterioration With Tumor Progression

Author(s):  
Kavita Rawat ◽  
Saima Syeda ◽  
Anju Shrivastava

Various studies have addressed the role of neutrophils in cancer wherein the focus has been drawn on the elevated neutrophil count in blood or at tumor loci. However, cancer has a systemic impact which targets various organs thus challenging the overall physiology of the host. So, it is worthwhile to explore whether and how neutrophils contribute to systemic deterioration in cancer. To discern the systemic role of neutrophils, we monitored their number and function at different stages of tumor growth in Dalton’s lymphoma mice model. Notably, we observed a gradual increase in neutrophil count in blood and their infiltration in vital organs of tumor bearing mice. In parallel, we observed damaged histoarchitecture with significant alterations in biochemical parameters that aggravated with tumor progression. We next examined systemic impact of neutrophil by assessing neutrophil elastase, myeloperoxidase, and matrix metalloproteinases (MMP-8 and MMP-9) wherein we found their upregulated expression and activity in tumor condition. Taken together, our results demonstrate high infiltration and hyperactivation of neutrophils which possibly account for gradual systemic deterioration during cancer progression. Our findings thus implicate neutrophils as a potential therapeutic target that may help to reduce the overall fatality rate of cancer.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.



2021 ◽  
Author(s):  
Ziming Jiang ◽  
Yiming Zhang ◽  
Yu Zhang ◽  
Zhankui Jia ◽  
Zhengguo Zhang ◽  
...  

Abstract Background: Exosomes mediated crosstalk between tumor cells and other stromal cells including tumor associated macrophages (TAM) plays an essential role in reprogramming tumor microenvironment (TME) to facilitate tumor progression. However, the mechanism of tumor derived exosomes promotes bladder cancer progression have not been defined.Methods: Exosomes were extracted from bladder cancer cells MB49 conditioned medium by ultracentrifugation. The effects of MB49-derived exosomes on macrophages polarization were analyzed by qPCR, flow cytometry, and Western blot. The immunosuppressive phenotype and function of MB49-derived exosomes stimulated macrophages were verified by tumor xenograft assays and T cell co-culture experiments. Exosomal miRNAs were analyzed by microarray to identify potential targets regulating macrophage polarization.Results: MB49-derived exosomes could be ingested by macrophages, consequently promoting macrophages immunosuppressive polarization. Mechanically, the MB49-derived exosomes induced macrophage M2 polarization was mediated by down-regulation of PTEN and activation of AKT/STAT3/6 signaling. Moreover, hindrance of the generation or secretion of exosomes by GW4869 inhibited macrophages differentiation into immunosuppressive phenotype and function, thereby suppressed tumor growth in a mouse subcutaneous tumor model.Conclusion: Our study confirmed the contribution of bladder cancer derived exosomes on the establishment of immunosuppressive TME and provided a potential therapeutic target for bladder cancer treatment.



2020 ◽  
Author(s):  
Jicong Du ◽  
Penglin Xia ◽  
Yuan Gao ◽  
Ying Cheng ◽  
Ruling Liu ◽  
...  

Abstract Background: Hematopoiesis and the differentiation of HSC have been proved to not only play important roles in cancer progression but also be changed or reprogrammed by the tumor microenvironment itself. In this study, we investigated the changes of HSCs differentiation in advanced tumor-bearing mice. Methods: The tumor-bearing mice model was established by subcutaneously inoculating with xenografts of B16-F10 mouse melanoma cells into the right back of male wild-type C57BL/6 mice. Hematopoietic stem cells and multilineage differentiation were evaluated using blood routine, HE-staining, flow cytometry assay and HSCs culture techniques. Results: The multilineage differentiation of hematopoietic stem cells was reprogrammed in vivo . Especially, the differentiations of megakaryocyte and erythrocyte were blocked , while myeloid cell and lymphoid cell differentiation was encouraged in advanced tumor-bearing mice. Conclusion: In this study we showed the potential mechanism of hematopoietic disorder in tumor condition from a respective of hematopoietic stem cell and multilineage differentiation, which provided new knowledge regarding cachexia.



2016 ◽  
Vol 50 (4) ◽  
pp. 215-224 ◽  
Author(s):  
L Horvathova ◽  
B Mravec

AbstractObjectives. A number of recently published studies have shown that the sympathetic nervous system may influence cancer progression. There are, however, some ambiguities about the role of the parasympathetic nerves in the modulation of growth of different tumor types. Moreover, tumor models used for investigation of the autonomic neurotransmission role in the processes related to the cancer growth and progression are mainly of the solid nature. The knowledge about the nervous system involvement in the modulation of the development and progression of malignant ascites is only fragmental. Therefore, the aim of the present article was to summarize the results of our experimental studies focused on the elucidation of the role of the autonomic nervous system in the modulation of tumor growth in animals. We are summarizing data from studies, in which not only different experimental approaches in order to influence the autonomic neurotransmission, but also different tumor models have been used.Methods. Three different types of tumor models, namely solid rat intra-abdominal fibrosarcoma, solid murine subcutaneous melanoma, and rat ascites hepatoma, and three types of interventions have been used in order to modulate the autonomic neurotransmission, specifically chemical sympathectomy, subdiaphragmatic vagotomy, or the electric stimulation of the vagus nerve.Results. We have proved a strong stimulatory effect of the sympathetic nerves on the development and growth in both solid tumors, rat fibrosarcoma as well as murine melanoma, and significant inhibitory impact on the survival time of tumor-bearing animals. The progression of ascites hepatoma in rats was not influenced by chemical sympathectomy. Modulation of parasympathetic signalization by vagotomy or vagal nerve stimulation does not affect fibrosarcoma and ascites hepatoma growth and survival of the tumor-bearing rats.Conclusions. Based on the obtained data, it seems that the solid types of tumors are suitable substrate for the direct action of neurotransmitters released especially from the sympathetic nerves. In contrast, it appears that the malignant ascites are not under the direct autonomic nerves control; however, an indirect action via the immune functions modulation cannot be excluded.



2000 ◽  
Vol 18 (13) ◽  
pp. 2626-2634 ◽  
Author(s):  
Matthew Meyerson

ABSTRACT: Shortening of the telomeric DNA at chromosome ends is postulated to limit the lifespan of human cells. In contrast, activation of telomerase, the enzyme that synthesizes telomeric DNA, is proposed to be an essential step in cancer cell immortalization and cancer progression. This review discusses the structure and function of telomeres and telomerase, the role of telomerase in cell immortalization, and the effects of telomerase inactivation on normal and cancer cells. Moreover, data on the experimental use of telomerase assays for cancer detection and diagnosis are reviewed. Finally, the review considers the evidence regarding whether telomerase inhibitors could be used to treat human cancers.



2021 ◽  
Vol 12 ◽  
Author(s):  
Shasha Zhang ◽  
Ying Dong ◽  
Ruiying Qiang ◽  
Yuan Zhang ◽  
Xiaoli Zhang ◽  
...  

Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/−) mice to obtain Strip1 homozygous knockout (Strip1−/−) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1−/− mice were obtained and the ratio of Strip +/− to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/− mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.



2022 ◽  
Vol 23 (2) ◽  
pp. 800
Author(s):  
Monica Fedele ◽  
Riccardo Sgarra ◽  
Sabrina Battista ◽  
Laura Cerchia ◽  
Guidalberto Manfioletti

The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.



2021 ◽  
Vol 12 ◽  
Author(s):  
Kim Ngan Luu Hoang ◽  
Joanne E. Anstee ◽  
James N. Arnold

Heme oxygenase-1 (HO-1) is an inducible intracellular enzyme that is expressed in response to a variety of stimuli to degrade heme, which generates the biologically active catabolites carbon monoxide (CO), biliverdin and ferrous iron (Fe2+). HO-1 is expressed across a range of cancers and has been demonstrated to promote tumor progression through a variety of mechanisms. HO-1 can be expressed in a variety of cells within the tumor microenvironment (TME), including both the malignant tumor cells as well as stromal cell populations such as macrophages, dendritic cells and regulatory T-cells. Intrinsically to the cell, HO-1 activity provides antioxidant, anti-apoptotic and cytoprotective effects via its catabolites as well as clearing toxic intracellular heme. However, the catabolites of heme degradation can also diffuse outside of the cell to extrinsically modulate the wider TME, influencing cellular functionality and biological processes which promote tumor progression, such as facilitating angiogenesis and metastasis, as well as promoting anti-inflammation and immune suppression. Pharmacological inhibition of HO-1 has been demonstrated to be a promising therapeutic approach to promote anti-tumor immune responses and inhibit metastasis. However, these biological functions might be context, TME and cell type-dependent as there is also conflicting reports for HO-1 activity facilitating anti-tumoral processes. This review will consider our current understanding of the role of HO-1 in cancer progression and as a therapeutic target in cancer.



2021 ◽  
Vol 2 ◽  
Author(s):  
Kamila J. Bienkowska ◽  
Christopher J. Hanley ◽  
Gareth J. Thomas

The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an “activated” myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other “hallmarks of malignancy.” CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ziming Jiang ◽  
Yiming Zhang ◽  
Yu Zhang ◽  
Zhankui Jia ◽  
Zhengguo Zhang ◽  
...  

Abstract Background Exosomes mediated crosstalk between tumor cells and other stromal cells including tumor associated macrophages plays an essential role in reprogramming tumor microenvironment (TME) to facilitate tumor progression. However, the mechanism of tumor derived exosomes promotes bladder cancer progression have not been defined. Methods Exosomes were extracted from bladder cancer cells MB49 conditioned medium by ultracentrifugation. The effects of MB49-derived exosomes on macrophages polarization were analyzed by qPCR, flow cytometry, and Western blot. The immunosuppressive phenotype and function of MB49-derived exosomes stimulated macrophages were verified by tumor xenograft assays and T cell co-culture experiments. Exosomal miRNAs were analyzed by microarray to identify potential targets regulating macrophage polarization. Results MB49-derived exosomes could be ingested by macrophages, consequently promoting macrophages immunosuppressive polarization. Mechanically, the MB49-derived exosomes induced macrophage M2 polarization was mediated by down-regulation of PTEN and activation of AKT/STAT3/6 signaling. Moreover, hindrance of the generation or secretion of exosomes by GW4869 inhibited macrophages differentiation into immunosuppressive phenotype and function, thereby suppressed tumor growth in a mouse subcutaneous tumor model. Conclusion Our study confirmed the contribution of bladder cancer derived exosomes on the establishment of immunosuppressive TME and provided a potential therapeutic target for bladder cancer treatment.



Sign in / Sign up

Export Citation Format

Share Document