scholarly journals Numerical Modeling and Sensitivity Analysis on Microwave Heating of Plastic on a Large Scale

Author(s):  
Sangjun Jeon ◽  
Jaekyung Kim ◽  
Daejong Yang

To reduce the carbon emissions during heating in the manufacturing process, microwaves have attracted significant attention. Microwave has a lot of advantages rather than traditional heating method such as rapid heating, lower thermal damage and eco-friendly process. In order to apply microwaves to manufacturing process, uniform and efficient heating is required. We have analyzed the effect of various design parameters such as cavity heights, the application of the reflector, and the number and positions of waveguides for uniform and efficient heating by numerical simulation and verified that by experiment. The results showed that a slight change in the cavity height altered the electromagnetic field distribution and heating parameters, such as the coefficient of variance and power absorption efficiency. With reflectors installed, uniform heating was achieved and power absorption was improved, with the spherical reflector showing the maximum efficiency. The use of double waveguides heated the target material in a uniform manner. An increase in the power supply also led to uniform heating. This large-scale analysis will be helpful in applying microwaves to actual industrial sites.

Author(s):  
S. Lee ◽  
W.-S. Song ◽  
H.-R. Kim ◽  
J.-G. Park

This paper presents the overall design of a 2 MW vertical-type wind turbine power generation system. Firstly, the performance of the jet-wheel turbo turbine was optimized by considering the design parameters such as the rotor inlet angle, the solidity, and the diameter-height ratio with the guide vanes fixed. The effects of the side guide vane and the opening area ratio upon the efficiency were tested. As the wind speed increases from 3m/s to 7m/s, the maximum power coefficient reached the limit value of about 0.6 based on the rotor area, which is much higher than those of ever-designed three-bladed horizontal turbines. The maximum power coefficients occurred at the tip speed ratio ranging between 0.6 and 0.7. Based on the performance of small prototype model, the large-scale wind turbine rotor was designed within the constraints of material cost, machining cost, structural safety at extreme conditions, and maintenance. Thus, the aspect ratio of the diameter-to-height and the hub-tip ratio were set as 0.8 and 0.0857, respectively. All sides of the rotor were almost opened to achieve a maximum efficiency with only possible blocking by the sprocket gear attached to the bottom of the rotor. To evaluate the structural safety of the turbine at extreme wind speeds over 25m/s lasting 10 minutes, the numerical simulations were performed to evaluate the pressure loadings on the blades and the guide vanes. According to the structural analysis based on the pressure loadings and its weight, the entire system is considered to be stable for the extreme and static loadings. The overall performance of the jet-wheel turbo wind-turbine system was analyzed to find the capacity factor for the wind characteristics of Gillim province in China by considering the gear box efficiency, the roller bearing losses, and the SCIG/DFIG generator efficiency.


2005 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Hanseong Lee ◽  
Hua Gu ◽  
Yumin Deng

Recently developed methods at UT Austin for the analysis of open or ducted propellers are presented, and then coupled with a constrained nonlinear optimization method to design blades of open or ducted propellers for maximum efficiency satisfying the minimum pressure constraint for fully wetted case, or the specified maximum allowable cavity area for cavitating case. A vortex lattice method (named MPUF3A) is applied to analyze the unsteady cavitating performance of open or ducted propellers subject to non-axisymmetric inflows. A finite volume method based Euler solver (named GBFLOW) is applied to predict the flow field around the open or ducted propellers, coupled with MPUF-3A in order to determine the interaction of the propeller with the inflow (i.e. the effective wake) or with the duct. The blade design of open or ducted propeller is performed by using a constrained nonlinear optimization method (named CAVOPT-BASE), which uses a database of computed performance for a set of blade geometries constructed from a base-propeller. The performance is evaluated using MPUF-3A and GBFLOW. CAVOPT-BASE approximates the database using the least square method or the linear interpolation method, and generates the coefficients of polynomials based on the design parameters, such as pitch, chord, and camber. CAVOPT-BASE finally determines the optimum blade design parameters, so that the propeller produces the desired thrust for the given constraints on the pressure coefficient or the allowed amount of cavitation.


2001 ◽  
Vol 44 (6) ◽  
pp. 141-147 ◽  
Author(s):  
R. Saravanane ◽  
D. V.S. Murthy ◽  
K. Krishnaiah

Starch manufacturing industrial units, such as sago mills, both at medium and large scale, suffer from inadequate treatment and disposal problems due to high concentration of suspended solid content present in the effluent. In order to investigate the viability of treatment of sago effluent, a laboratory scale study was conducted. The treatment of sago effluent was studied in a continuous flow anaerobic fluidized bed reactor. The start-up of the reactor was carried out using a mixture of digested supernatant sewage sludge and cow dung slurry in different proportions. The effect of operating variables such as COD of the effluent, bed expansion, minimum fluidization velocity on efficiency of treatment and recovery of biogas was investigated. The treated wastewater was analysed for recycling and reuse to ensure an alternative for sustainable water resourse management. The maximum efficiency of treatment was found to be 82% and the nitrogen enriched digested sludge was recommended for agricultural use.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012033
Author(s):  
O V Mitrofanova ◽  
A V Fedorinov

Abstract The theoretical and computational analysis proposed in this work is aimed at identifying the features of thermal and hydrodynamic processes carried out in the steam-generating channels of the ship type water-moderated nuclear power installations. It is shown that the complex geometry of the thermohydraulic tract curvilinear channels of the steam generating system has a significant effect on the efficiency of the transport nuclear power installation. In addition to the formation of large-scale vortex structures and swirling flow in the pipeline, the phenomenon of the swirling flow crisis is revealed, under which the low-frequency component of the acoustic spectrum is enhanced. The scientific and applied significance of the proposed research is associated with the need to ensure a wide range of operational changes in efficient and safe operation power modes of icebreaker nuclear power installations. The research, aimed at developing the principles of physical and mathematical modeling of complex vortex flows, is necessary to optimize the design parameters of the thermal power equipment elements of new generation ship nuclear power installations in order to ensure increased safety and reliability of their operation.


Author(s):  
H. Schwarz ◽  
J. Friedrichs ◽  
J. Flegler

Brush seals, which were originally designed for gas turbine applications, have been successfully applied to large-scale steam turbines within the past decade. From gas turbine applications, the fundamental behavior and designing levers are known. However, the application of brush seals to a steam turbine is still a challenge. This challenge is mainly due to the extreme load on the brush seal while operating under steam. Furthermore, it is difficult to test brush seals under realistic conditions, i.e. under live steam conditions with high pressure drops. Due to these insufficiencies, 2 test rigs were developed at the University of Technology Braunschweig, Germany. The first test rig is operated under pressurized air and allows testing specific brush seal characteristics concerning their general behavior. The knowledge gained from these tests can be validated in the second test rig, which is operated under steam at pressure drops of 45 bar and temperatures up to 450 °C. Using both the air test rig and the steam test rig helps keep the testing effort comparably small. Design variants can be pre-tested with air, and promising brush seal designs can consequently be tested in the steam seal test rig. The paper focuses on a clamped brush seal design which, amongst others, is used in steam turbine blade paths and shaft seals of current Siemens turbines. The consequences of the brush assembly on the brush appearance and brush performance are shown. The clamped brush seal design reveals several particularities compared to welded brushes. It could be shown that the clamped bristle pack tends to gape when clamping forces rise. Gapping results in an axially expanding bristle pack, where the bristle density per unit area and the leakage flow vary. Furthermore, the brush elements are usually assembled with an axial lay angle, i.e. the bristles are reclined against the backing plate. Hence, the axial lay angle is also part of the investigation.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


2021 ◽  
pp. 1-51
Author(s):  
Zhenhang Wu ◽  
Sebastien Seguy ◽  
Manuel Paredes

Abstract This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when SMR disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This work offers some fundamental insights into the optimal design of cubic and bistable NES.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


2021 ◽  
Vol 891 ◽  
pp. 31-36
Author(s):  
Jirah Emmanuel T. Nolasco ◽  
Camille Margaret S. Alvarillo ◽  
Joshua L. Chua ◽  
Ysabel Marie C. Gonzales ◽  
Jem Valerie D. Perez

Continuous fixed-bed column studies were performed using nanocomposite beads made up of chitosan, polyethyleneimine, and graphene oxide as adsorbents for the removal of methyl orange (MO) in water. The effects of different operating parameters such as initial MO concentration (5, 10, and 15 ppm), bed height (10, 17.5, and 25 cm), and flow rate (27, 43, and 58 mL/min) were investigated using an upward-flow fixed-bed column set-up. The breakthrough curves generated were fitted with Adams-Bohart, Thomas, Yoon-Nelson, and Yan et al. models. The results showed that Yan et al. model agreed best with the breakthrough curves having an R2 as high as 0.9917. Lastly, design parameters for a large-scale adsorption column were determined via scale-up approach using the parameters obtained from column runs.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000100-000106
Author(s):  
Tom Colosimo ◽  
Horst Clauberg ◽  
Evan Galipeau ◽  
Matthew B. Wasserman ◽  
Michael Schmidt-Lange ◽  
...  

Advancements in electronic packaging performance and cost have historically been driven by higher integration primarily provided by fab shrinks that has followed the well-known Moore's law. However, due to the tremendous and continuously increasing cost of building new fabs, the performance/cost improvements achieved via node shrinks are negated. This leaves packaging innovation as the vehicle to achieve future cost-performance improvements. This has initiated a More-than-Moore idea that has led to vigorous R&D in packaging. Advanced packages which employ ultra-fine pitch flip chip technology for chip-to-substrate, chip-to-chip, or chip-to-interposer for the first level interconnect have been developed as an answer to obtaining higher performance. However, the costs are too high as compared to traditional wire bonding. The status today is that the fundamental technical hurdles of manufacturing the new advanced packages have been solved, but cost reduction and yield improvements have to be addressed for large-scale adoption into high volume manufacturing. In traditional flip chip assembly silicon chips are tacked onto a substrate and then the solder joints are melted and mass reflowed in an oven. This mass reflow technique is troublesome as the pitch of the solder bumps become finer. This is due to the large differences in the thermal expansion coefficient of the die and the substrate, which creates stress at the solder joints and warpage of the package when the die and substrate are heated and cooled together. To mitigate and resolve this issue, thermo-compression bonders have been developed which locally reflow the solder without subjecting the entire substrate to the heating and cooling cycle. This requires that the bondhead undergo heating past the melting point of solder and then cooling down to a low enough temperature to pick the next die from the wafer that is mounted to tape. Machines in the market today can accomplish this temperature cycle in 7 to 15 seconds. This is substantially slower than the standard flip chip process which leads to high cost and is delaying the introduction of these new packages. This paper shows a flip chip bonder with a new heating and cooling concept that will radically improve the productivity of thermo-compression bonding. Data and productivity cycles from this new bond head with heating rates of over 200°C/sec and cooling of faster than 100°C/sec are revealed. Experimental results are shown of exceptional temperature accuracy across the die of 5°C throughout the cycle and better than 3°C at the final heating stage. The high speed thermo-compression bonds are analyzed and the efficacy of the new concept is proven. Excellent temperature uniformity while heating rapidly is an absolute necessity for enabling good solder joints in a fast process. Without good temperature uniformity, additional dwell times need to be incorporated to allow heat to flow to all of the joints, negating any benefits from rapid heating. Whereas the current state-of-that-art is often to program temperature in steps, this bonder can be commanded and accurately follows more complex temperature profiles with great accuracy. Examples of how this profiling can be used to enhance the uniformity and integrity of the joints with non-conductive pastes, film, and without underfill along with the associated productivity improvements will be shown. Tests that show portability across platforms that will lead to set up time and yield improvements and are identified and quantified. Additionally new ideas for materials and equipment development to further enhance productivity and yield are explored.


Sign in / Sign up

Export Citation Format

Share Document