scholarly journals Disparities in Lung Cancer: miRNA Isoform Characterization in Lung Adenocarcinoma

Author(s):  
Rosario Distefano ◽  
Giovanni Nigita ◽  
Patricia Le ◽  
Giulia Romano ◽  
Mario Acunzo ◽  
...  

Despite the development of targeted therapeutics, immunotherapy, and strategies for early detection, lung cancer carries a high mortality. Further, significant racial disparities in outcomes exist for which the molecular drivers have yet to be fully elucidated. The growing field of Epitranscriptomics has introduced a new layer of complexity to the molecular pathogenesis of cancer. RNA modifications can occur in coding and non-coding RNAs, such as miRNAs, possibly altering their gene regulatory function. The potential role for such modifications as clinically informative biomarkers remains largely unknown. Here, we concurrently profiled canonical miRNAs, shifted isomiRs (templated and non-templated), miRNAs with single-point modification events (RNA and DNA) in White American (W) and Black or African American (B/AA) lung adenocarcinoma (LUAD) patients. We found that while most deregulated miRNA isoforms were similar in W and B/AA LUAD tissues compared to normal adjacent tissues, there was a subgroup of isoforms with deregulation according to race. We specifically investigated an edited miRNA, miR-151a-3p with an A-to-I editing event at position 3, to determine how its altered expression may be associated with activation of divergent biological pathways between W and B/AA LUAD patients. Finally, we identified distinct race-specific miRNA isoforms that correlated with prognosis for both Ws and B/AAs. Our results suggest that concurrently profiling canonical and non-canonical miRNAs may have potential as a strategy for identifying additional distinct biological pathways and biomarkers in lung cancer.

2020 ◽  
Author(s):  
Xu Zhang ◽  
Tapan K. Maity ◽  
Karen E. Ross ◽  
Yue Qi ◽  
Constance M. Cultraro ◽  
...  

AbstractLung cancer is the leading cause of cancer mortality worldwide. The treatment of lung cancer patients harboring mutant EGFR with orally administered EGFR TKIs has been a paradigm shift. Osimertinib and rociletinib are 3rd generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here, we have characterized the proteome and phosphoproteome of a series of isogenic EGFR mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs. To our knowledge, this is the most comprehensive proteomic dataset resource to date to investigate 3rd generation EGFR TKI resistance in lung adenocarcinoma. We have interrogated this unbiased global quantitative mass spectrometry dataset to uncover alterations in signaling pathways, reveal a proteomic signature of epithelial mesenchymal transition (EMT) and identify kinases and phosphatases with altered expression and phosphorylation in TKI resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition resulting in inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Furthermore, we performed anticorrelation analyses of this phosphoproteomic dataset with the published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures (LINCS) program to predict drugs with the potential to overcome EGFR TKI resistance. We identified dactolisib, a PI3K/mTOR inhibitor, which in combination with osimertinib overcomes resistance both in vitro and in vivo.One Sentence SummaryGlobal quantitative proteome and phosphoproteome analyses to examine altered signaling pathways in isogenic 3rd generation EGFR TKI sensitive and resistant cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhuochen Zhao ◽  
Junhu Wan ◽  
Manman Guo ◽  
Zhengwu Yang ◽  
Zhuofang Li ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been verified to play fatal role in regulating the progression of lung adenocarcinoma (LUAD). Although lncRNAs play important role in regulating the autophagy of tumor cells, the function and molecular mechanism of LINC01559 in regulating lung cancer development remain to be elucidated. Method and materials In this study, we used bioinformatics to screen out autophagy-related lncRNAs from TCGA-LUAD repository. Then the least absolute shrinkage and selection operator (LASSO) regression was applied to establish the signature of autophagy-related lncRNAs so that clinical characteristics and survival in LUAD patients be evaluated. Finally, we selected the most significant differences lncRNA, LINC01559, to verify its function in regulating LUAD progression in vitro. Results We found high expression of LINC01559 indicates lymph node metastasis and poor prognosis. Besides, LINC01559 promotes lung cancer cell proliferation and migration in vitro, by enhancing autophagy signal pathway via sponging hsa-miR-1343-3p. Conclusion We revealed a novel prognostic model based on autophagy-related lncRNAs, and provide a new therapeutic target and for patients with lung adenocarcinoma named LINC01559.


2021 ◽  
Author(s):  
Zhuochen Zhao ◽  
Junhu Wan ◽  
Manman Guo ◽  
Zhengwu Yang ◽  
Zhuofang Li ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have been verified to play fatal role in regulating the progression of lung adenocarcinoma (LUAD). Although lncRNAs play important role in regulating the autophagy of tumor cells, the function and molecular mechanism of LINC01559 in regulating lung cancer development remain to be elucidated. Method and materials: In this study, we used bioinformatics to screen out autophagy-related lncRNAs from TCGA-LUAD repository, and the least absolute shrinkage and selection operator (LASSO) regression was applied to establish the clinical characteristics and survival of autophagy-related lncRNAs in LUAD patients was analyzed. Finally, we selected the most significant differences lncRNA, LINC01559, to verify its function in regulating LUAD progression.Results: we found high expression of LINC01559 indicates lymph node metastasis and poor prognosis. Besides, LINC01559 promotes lung cancer cell proliferation and migration in vitro, by enhancing autophagy signal pathway. Conclusion: We revealed a novel prognostic model based on autophagy-related lncRNAs, and provide a new therapeutic target and for patients with lung adenocarcinoma with LINC01559.


2021 ◽  
Author(s):  
Yunfeng Wang ◽  
Haoliang Xue ◽  
Marine Aglave ◽  
Antoine Laine ◽  
Melina Gallopin ◽  
...  

Background: Transcriptome analysis of cancer tissues has been instrumental in defining tumor subtypes, diagnostic signatures and cancer regulatory networks. Cancer transcriptomes are still predominantly analyzed at the level of gene expression. Few studies have addressed transcript-level variations, and most of these only looked at splice variants. Previously we introduced a k-mer based, reference-free method, DE-kupl, that performs differential analysis of RNA-seq data at the k-mer level, which enables distinguishing RNAs differing by a single nucleotide. Here we evaluate the significance of differential events discovered by this method in two independent lung adenocarcinoma RNA-seq datasets (N=583 and N=154). Results: Focusing on differential events in a tumor vs normal setting, we found events in endogenous repeats, alternative splicing and polyadenylation sites, long non-coding RNAs, retained introns and unmapped RNAs. Replicability was highly significant for most event classes (assessed by comparing to events shared between unrelated tumors). Overall about 160,000 differential k-mer contigs were shared between datasets, including a large set of sequences from hypervariable genes such as immunoglobulins, SFTP and mucin genes. Most interestingly, we identified a set of novel tumor-specific long non-coding RNAs in intergenic and intronic regions. We found that expressed endogenous transposons defined two major groups of patients (high/low repeat expression) with distinct clinical characteristic. A number of repeats, intronic RNAs and lincRNA achieved strong patient stratification in univariate or multivariate survival models. Finally, using antigen presentation prediction, we identified 55 contigs predicted to produce recurrent tumor-specific antigens. Conclusions: K-mer based RNA-seq analysis enables description of cancer transcriptomes at nucleotide precision, independently of prior transcript annotation. Application to lung cancer data uncovered events stemming from a wide variety of transcriptional and postranscriptional mechanisms. Among those events, a significant subset was replicable between cohorts, thus constituting novel RNA hallmarks of cancer. The code is available at: https://github.com/Transipedia/dekupl-lung-cancer-inter-cohort.


Author(s):  
Huihui Hu ◽  
Hangdi Xu ◽  
Fen Lu ◽  
Jisong Zhang ◽  
Li Xu ◽  
...  

Lung cancer is the first cause of cancer death, and gene copy number variation (CNV) is a vital cause of lung cancer progression. Prognosis prediction of patients followed by medication guidance by detecting CNV of lung cancer is emerging as a promising precise treatment in the future. In this paper, the differences in CNV and gene expression between cancer tissue and normal tissue of lung adenocarcinoma (LUAD) from The Cancer Genome Atlas Lung Adenocarcinoma data set were firstly analyzed, and greater differences were observed. Furthermore, CNV-driven differentially expressed long non-coding RNAs (lncRNAs) were screened out, and then, a competing endogenous RNA (ceRNA) regulatory network related to the gene CNV was established, which involved 9 lncRNAs, seven microRNAs, and 178 downstream messenger RNAs (mRNAs). Pathway enrichment analyses sequentially performed revealed that the downstream mRNAs were mainly enriched in biological pathways related to cell division, DNA repair, and so on, indicating that these mRNAs mainly affected the replication and growth of tumor cells. Besides, the relationship between lncRNAs and drug effects was explored based on previous studies, and it was found that LINC00511 and LINC00942 in the CNV-associated ceRNA network could be used to determine tumor response to drug treatment. As examined, the drugs affected by these two lncRNAs mainly targeted metabolism, target of rapamycin signaling pathway, phosphatidylinositol-3-kinase signaling pathway, epidermal growth factor receptor signaling pathway, and cell cycle. In summary, the present research was devoted to analyzing CNV, lncRNA, mRNA, and microRNA of lung cancer, and nine lncRNAs that could affect the CNV-associated ceRNA network we constructed were identified, two of which are promising in determining tumor response to drug treatment.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 540
Author(s):  
Abbas Salavaty ◽  
Zahra Rezvani ◽  
Ali Najafi

Long non-coding RNAs (lncRNAs) are a group of transcripts over 200 nucleotides in length that do not code for proteins. The association of the dysregulation of numerous lncRNAs with several malignancies, including lung cancer, has been frequently reported. This study aims to inspect the association of genomic and transcriptomic alterations to the lncRNA LINC00987 with lung adenocarcinoma, a subtype of lung cancer, using a bioinformatic approach. To this end, we used three publically available online databases, cBioPortal, the International Cancer Genome Consortium Data Portal and the GEPIA web server. In short, our results demonstrated that LINC00987 expression might have a tumor suppressive role in lung adenocarcinoma and levels of expression could be of prognostic value for this cancer type.


2018 ◽  
Author(s):  
N Enz ◽  
F Janker ◽  
F Ramírez Fragoso ◽  
M Haberecker ◽  
A Soltermann ◽  
...  

2012 ◽  
Vol 153 (52) ◽  
pp. 2051-2059 ◽  
Author(s):  
Zsuzsanna Gaál ◽  
Éva Oláh

MicroRNAs are a class of small non-coding RNAs regulating gene expression at posttranscriptional level. Their target genes include numerous regulators of cell cycle, cell proliferation as well as apoptosis. Therefore, they are implicated in the initiation and progression of cancer, tissue invasion and metastasis formation as well. MicroRNA profiles supply much information about both the origin and the differentiation state of tumours. MicroRNAs also have a key role during haemopoiesis. An altered expression level of those have often been observed in different types of leukemia. There are successful attempts to apply microRNAs in the diagnosis and prognosis of acute lymphoblastic leukemia and acute myeloid leukemia. Measurement of the expression levels may help to predict the success of treatment with different kinds of chemotherapeutic drugs. MicroRNAs are also regarded as promising therapeutic targets, and can contribute to a more personalized therapeutic approach in haemato-oncologic patients. Orv. Hetil., 2012, 153, 2051–2059.


2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


Sign in / Sign up

Export Citation Format

Share Document