scholarly journals Development of Calculation Theory for Hinged-Connected Beams on Elastic Base

2020 ◽  
Vol 19 (5) ◽  
pp. 389-394
Author(s):  
O. V. Kozunova

The paper provides a brief review of the literature on the theory and methods of calculating hinged-connected or articulated structures on an elastic base. The author refers to the works of B. G. Korenev, G. Ya. Popov, I. A. Simvulidi, R. V. Serebryany, A. G. Yuriev, in which, using various approaches, studies have been carried out to calculate hinged-connected beams and slabs on an elastic base. From the analysis of  scientific literature on the topic under consideration, it can be concluded that there is no general approach to solving this problem, which is valid for any hinged-connected beams and plates lying on any model of an elastic base under the action of an arbitrary external load.  In addition, a similar problem for this type of engineering calculations is observed in the normative documents. In the Republic of Belarus, a number of industry documents have been used to calculate pavement bearing elements for various highways and track transverse structures, in which road pavements with a load-bearing element and the connection of elements between themselves (hinged or rigid) are considered in an incoherent formulation. The paper proposes a universal approach for calculating hinged-connected beams on an elastic foundation, based on the mixed method of structural mechanics, taking into account the Zhemochkin ratios for functions of the elastic medium effects. The following hypotheses and assumptions are taken into account: only normal stresses act on  the  contact  of  the  beam  with the base, hypotheses  of  the bending  theory are valid  for beams,  hinges  between  the beams are cylindrical, and the distribution of contact stresses along the width of the beams is uniform. As a result of the proposed calculation, the stress-strain state of a system of hinged-connected beams on an elastic foundation has been investigated, namely: distribution of contact stresses under beams, internal forces in the beams and hinged joints, as well as settlements of the elastic foundation under them. The numerical implementation of this approach has been performed using the mathematical package Mathematica 10.4. Examples of calculation are given for different versions of hinged-connected beams and an elastic base: for three hinged-connected beams based on Winkler and seven – on an elastic half-space.

2020 ◽  
Vol 91 (5) ◽  
pp. 70-76
Author(s):  
E.V. LEONTIEV ◽  
◽  

The paper considers the system "beam - elastic foundation", in which a beam with free edges was at first on a solid elastic foundation, but when a defect suddenly forms in the foundation under the right side of the beam, part of foundation was removed from design model. As a result of calculations performed by the method of initial parameters, the displacements and internal forces for the static problem are determined. The dynamic problem of determining the forces and displacements was solved, taking into account the three vibration loads F (t) = F sinγt applied at arbitrary points d when the conditions for supporting the right side of the beam on an elastic foundation were changed, the values of the dynamics coefficients were determined. Conditions are formulated that must be taken into account when analyzing the dynamic behavior of a structure under the influence of vibration loads in the case of a change in the conditions of bearing on an elastic foundation.


Author(s):  
S. Bosakov ◽  
O. Kozunova

This work presents a brief review of the literature on the theory and technique of computation of pivotally-connected structures on a linearly-elastic foundation. The authors refer to the works of B.G.Korenev, G.Ya.Popov, I.A.Simvulidi, R.V.Serebryany and A.G.Yuryev, in which investigations for calculating the pivotally-connected beams and slabs on an elastic foundation are performed using different approaches. From the analysis of the scientific and normative literature on the subject under consideration, a conclusion can be made that there is no common approach to solution of this problem, which would hold for any pivotally connected structures being in contact with any elastic foundation model under the action of an arbitrary external load. Besides, when designing the load carrying members of pavements of motor roads of various purposes in the Republic of Belarus, a number of branch-specific normative documents, where the pavements with the load carrying member and interconnection of members over the track length are considered separately in unconnected setting, is used. In this work, a universal approach for computation of pivotally-connected beams on an elastic foundation in the linear setting and taking into account the physical nonlinearity of the beam material is proposed. This approach is based on a mixed method of structural mechanics and implemented in different foundations taking into account the Zhemochkins relations for the functions of influences of an elastic medium. The following hypotheses and assumptions of the linear theory of elasticity and structural mechanics are taken into consideration: only normal stresses act at the contact of the beam with the foundation for beams the hypotheses of the flexural theory the pivot joints are cylindrical and the distribution of the contact stresses over the beam width is uniform. The physical nonlinearity of the beam material is taken into consideration through the variable rigidity of the Zhemochkins areas. Namely: after determining the forces in the Zhemochkins bonds at the contact of every beam with an elastic foundation as a result of the linear computation, the values of bending moments in each section of every beam are determined by the structural mechanics methods. From the calculated values of the moments, the tangential rigidity for each Zhemochkins area on the beam is determined using the formula of the moment-curvature dependence for the beam sections are determines as hyperbolic tangent. In the results of nonlinear computation, the stress-strain behaviour of the system of pivotally-connected beams on an elastic foundation is investigated as it was made earlier in the linear setting: distribution of contact stresses under the beams, internal forces in the beams and pivot joints as well as elastic foundation settlements. The proposed approach is implemented numerically with the use of the Mathematica 10.4 mathematical package. The computation example for three pivotally-connected beams on the Winkler foundation taking into account their physical nonlinearity.В работе приводится краткий обзор литературы по теории и методикам расчета шарнирно-соединенных конструкций на линейно-упругом основании. Авторы ссылаются на работы Б. Г. Коренева, Г. Я. Попова, И. А. Симвулиди, Р. В. Серебряного, А. Г. Юрьева, в которых различными подходами проведены исследования по расчету шарнирно-соединенных балок и плит на упругом основании. Из анализа научной и нормативной литературы по рассматриваемой тематике можно сделать вывод об отсутствии общего подхода к решению этой проблемы, справедливого для любых шарнирно-соединенных конструкций, контактирующих с любой моделью упругого основания под действием произвольной внешней нагрузки. Кроме того, при проектировании несущих элементов дорожных покрытий автомобильных дорог различного назначения в Республике Беларусь используется ряд отраслевых нормативных документов, в которых дорожная одежда с несущим элементом и соединение элементов между собой по длине трассы рассматриваются отдельно, в несвязной постановке. В данной работе предлагается универсальный подход для расчета шарнирно-соединенных балок на упругом основании в линейной постановке и с учетом физической нелинейности материала балок. Этот подход основан на смешанном методе строительной механики и реализуется в разных основаниях с учетом соотношений Жемочкина для функций влияний упругой среды. В расчет принимаются следующие гипотезы и допущения линейной теории упругости и строительной механики: на контакте балки с основанием действуют только нормальные напряжения, для балок справедливы гипотезы теории изгиба, шарниры между балками являются цилиндрическими, распределение контактных напряжений по ширине балок равномерное. Физическая нелинейность материала балок в предлагаемом расчете учитывается через переменную жесткость участков Жемочкина. А именно: после определения усилий в связях Жемочкина на контакте каждой балки с упругим основанием в результате линейного расчета, методами строительной механики определяются величины изгибающих моментов в каждом сечении каждой балки. По вычисленным значениям моментов определяется касательная жесткость для каждого участка Жемочкина на балках по формуле зависимости момент-кривизна для сечений балки в виде гиперболического тангенса. В результатах нелинейного расчета, как и ранее в линейной постановке, исследуется напряженно-деформированное состояние системы из шарнирно-соединенных балок на упругом основании: распределение контактных напряжений под балками, внутренние усилия в балках и шарнирных соединениях, а также осадки упругого основания. Численная реализация предлагаемого подхода выполнена с использованием математического пакета Mathematica 10.4. Приведен пример расчета для трех шарнирно-соединенных балок на основании Винклера с учетом их физической нелинейности.


Author(s):  
S.V. Bosakov ◽  
◽  
O.V. Kozunova ◽  

Abstract. Problems of calculating slabs on an elastic foundation in polar coordinates in the traditional formulation without taking into account the shear stresses in the contact zone are considered. The shape of the plates is taken in the form of a sector of a circle with an arbitrary angle or part of a ring. Analytical solutions for such problems are known for slabs of a circular or annular plan. The calculation is carried out by the Zhemochkin method, therefore, the deflections of the slab are first determined in the form of a sector of a circle with an arbitrary angle or a part of a ring with a clamped normal. This stage of the calculation is performed by the Ritz method, where the terms of the series by the product of the powers of the radius by the trigonometric functions of the angular coordinate are taken as the coordinate functions. The expressions obtained for the deflections of a slab with a clamped normal make it possible to form a system of resolving equations of the Zhemochkin method, the solution of which is the linear and angular displacements of the introduced clamping and the distribution of reactive stresses under the slab. Further, by known methods, the movements of the slab on the elastic foundation and the forces in it are determined. Two examples are given for slabs in the form of a semicircle and an annular sector with a right angle on an elastic half-space. The results obtained can find application in the calculation of circular and ring foundations for non-axisymmetric loads and slab foundations of complex shapes in polar coordinates.


Author(s):  
Slav D. Semeniuk ◽  
Roman V. Kumashov

Static analysis of the stress-strain state of a plate on elastic foundation is made in two ways on the example of a reinforced concrete road plate 2PP30.18-30 series B3.503.1-1 intended for temporary roads. These plates are considered as a planar structure on an elastic foundation. The plates are calculated by the method of B.N. Zhemochkin using the Ritz method to determine plate deflections in the main system using the mathematical package «MathCad». Also the plates are calculated on the PC «LIRA». There are given the results of experimental and numerical studies in this article


1982 ◽  
Vol 104 (3) ◽  
pp. 347-351 ◽  
Author(s):  
L. M. Keer ◽  
M. D. Bryant ◽  
G. K. Haritos

Numerical results are presented for a cracked elastic half-space surface-loaded by Hertzian contact stresses. A horizontal subsurface crack and a surface breaking vertical crack are contained within the half-space. An attempt to correlate crack geometry to fracture is made and possible mechanisms for crack propagation are introduced.


1992 ◽  
Vol 114 (2) ◽  
pp. 253-261 ◽  
Author(s):  
C. H. Kuo ◽  
L. M. Keer

The three-dimensional problem of contact between a spherical indenter and a multi-layered structure bonded to an elastic half-space is investigated. The layers and half-space are assumed to be composed of transversely isotropic materials. By the use of Hankel transforms, the mixed boundary value problem is reduced to an integral equation, which is solved numerically to determine the contact stresses and contact region. The interior displacement and stress fields in both the layer and half-space can be calculated from the inverse Hankel transform used with the solved contact stresses prescribed over the contact region. The stress components, which may be related to the contact failure of coatings, are discussed for various coating thicknesses.


2021 ◽  
Vol 14 (2) ◽  
pp. 54-66
Author(s):  
Svetlana Sazonova ◽  
Viktor Asminin ◽  
Alla Zvyaginceva

The sequence of application of the mixed method for calculating internal forces in statically indeterminate frames with elements of increased rigidity is given. The main system is chosen for the frame with one kinematic and one force unknown. The canonical equations of the mixed method are written, taking into account their meaning. Completed the construction of the final diagram of the bending moments and all the necessary calculations and checks. When calculating integrals, Vereshchagin's rule is applied. The solution of the problem is checked by performing the calculation using the computer program STAB12.EXE; the results of the calculations are numerically verified using the finite element method. An example of the formation of the initial data for the STAB12.EXE program and the subsequent processing of the calculation results, the rules for comparing the numerical results and the results obtained in the calculation of the frame by the mixed method are given.


2019 ◽  
Vol 97 ◽  
pp. 05048
Author(s):  
Bakhtiyor Yuldashev ◽  
Sagdulla Abdukadirov

Wave processes in an elastic half-space covered with an elastic layer and (or) a thin elastic plate are considered in the paper. External load moves along the free surface. In the stationary statement, the waveguide properties of the system are determined. The multiple roots of the dispersion equations are revealed and the critical load velocities, leading to the initiation of resonant processes, are determined. In the case when the load moves with the velocity of the Rayleigh wave, additional resonances determined by the structure can be realized in the structure under consideration. It is revealed that Rayleigh resonance exists for long waves only. Numerical solutions are obtained that make it possible to trace the development of resonant excitations. The models of simple structures that have dispersive properties in the medium wave zone are analyzed, such as a thin plate on an elastic base; a model with an attached inertial medium. Analytical solutions have been obtained for these models. Computer simulations conducted simultaneously allow us to analyze the quantitative features of process throughout the entire time period of the load effect. The numerical and asymptotic solutions are compared.


The article analyzes the problem of rounding the processes of formation of the state youth policy in Uzbekistan as a theoretical source of the legislative and legislative acts of the Republic of Uzbekistan in this field. This is due to the fact that these normative documents define the content of a number of concepts that serve as a category system for research in the field. It also reveals that the period of formation of the state youth policy in Uzbekistan is considered as a determinant of the date of adoption of the Law and other legislative acts.


2021 ◽  
pp. 85-90
Author(s):  
B.Kh. Imamov ◽  

Introduction. This article analyzes the formation of Uzbek-Turkish relations, the causes of political conflicts and disagreements between the two countries, as well as the efforts to restore these relations on the basis of new evidence. It was also noted that the normative and legal documents signed in recent years during high-level state visits and official meetings of the two leaders in trade, economic, scientific, technical, cultural and humanitarian spheres play an important role in expanding mutually beneficial relations. Methods and materials. The article covers the information on the meetings of the heads of the two countries at the highest level, as well as the agreements signed by the heads of the two states, the content of the agreements, as well as their role and role in the development of states. These signed legal and normative documents, in turn, serve to close and effective cooperation between the two countries in the political, economic and cultural spheres. Analysis. The article analyzes the dynamics of important state visits of Uzbekistan and Turkey by the heads of State, which serve the relations of cooperation in many spheres. The analysis on the topic was conducted in 1991-2018 with a thorough observation of the decline in some years, accompanied by a high level of dynamics of relations between the two countries. Results. The diplomatic relations between the Republic of Uzbekistan and the Republic of Turkey are characterized by the following results: bilateral agreements concluded in all areas, signed agreements and agreements; joint ventures established over the past years, held exhibitions and business forums; Membership of the Republic of Uzbekistan to the Council of Turkic-speaking states; The attitude of the Turkish government to the foreign policy of the head of Uzbekistan in the country; the fact that today after the Cold War in the relations of the two countries has risen to the level of a new strategic partnership will serve as another repetition of such cases in the future.


Sign in / Sign up

Export Citation Format

Share Document