scholarly journals A Study of Wear Rate Epoxy Resin filled with SiO2 particle and Glass fibers

2011 ◽  
Vol 8 (2) ◽  
pp. 689-693
Author(s):  
Baghdad Science Journal

This research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.

2014 ◽  
Vol 490-491 ◽  
pp. 83-87
Author(s):  
Qing Lin Li ◽  
Tian Dong Xia ◽  
Ye Feng Lan ◽  
Yi Sheng Jian

The effects of the primary Si phase and applied load on the dry sliding wear behaviors of hypereutectic Al-20Si alloy were investigated. The results show that coarse polygonal and star-like primary Si was refined into fine blocky shape by increasing superheat treatment temperature. The friction coefficient and wear rate significantly decrease after decreasing the size and changing the morphology of primary Si. Moreover, the friction coefficient and wear rate increase with the increase of applied load. Therefore, the wear properties are greatly influenced by the parameters like morphology and size of primary Si as well as applied load.


2019 ◽  
Vol 17 (40) ◽  
pp. 1-10
Author(s):  
Ayad Qabash Hameed

In this study, nanocomposites have been prepared by addingmultiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,4, 5) wt% to epoxy resin. The samples were prepared by hand lay-upmethod. Influence of an applied load before and after immersion insodium hydroxide (NaOH) of normality (0.3N) for (15 days) atlaboratory temperature on wear rate of Ep/MWCNTsnanocomposites was studied. The results showed that wear rateincreases with increasing the applied load for the as prepared andimmersed samples and after immersion. It was also found that epoxyresin reinforced with MWCNTs has wear rate less than neat epoxy.The sample (Ep + 5wt% of MWCNTs) has lower wear rate. Theimmersion effect in base solution led to increase in wear rate valuesfor all samples compared to natural condition.


2021 ◽  
Vol 21 (1) ◽  
pp. 26-34
Author(s):  
Hwazen Salam Fadhil ◽  
Rusul Salah Hadi

In this research, erosion wear rate and hardness shore D for polymer biocomposite materials were investigated. The present bio-composites made up of differing weight percentage of pistachio shell powder (0%, 5%, 7%, and 9%) with epoxy resin was prepared by hand layout method. The erosion wear rates for bio composites obtained with under constant factors (10 hours, 60º impingement angles, sand silica particles 850μm, standoff distance 23 cm, flow rate 45 L/min, room temperature, nozzle diameter 4mm and pump diameter 50 mm). Results show that the specimen (epoxy + 9% pistachio shell powder) has the best erosion wear rate resistance and hardness shore D compared with other specimens, also the specimen reinforced by 9% pistachio shell have the lower density and highest water absorption percentage and it is found that the improving percentage for the this specimen in hardness is (11.5%) and in erosion wear rate is (775%). The study reveals that the addition of pistachio shell powder to the epoxy reduces its erosion wear rate and semi ductile behavior.


2014 ◽  
Vol 941-944 ◽  
pp. 1612-1615
Author(s):  
Rui Min Sun ◽  
Hui Zhao ◽  
Yong Heng Zhou

PAI/SiC-and PAI/SiC/PTFE-composite coatings were prepared, which were deposited on Al substrates using spraying technology to improve their surfaces performance. Friction and wear of PAI composite coatings were evaluated on a ball-on-block wear tester, and thermal properties were investigated by TG. It is found that, the friction coefficient and wear rate of PAI coatings reaches the best value when the content of SiC and PTFE is 10 wt % and 0.8wt% respectively, and the friction coefficient of the composites coatings decrease but the wear rate increase with increasing applied load; TG curves shows that the PAI composite coatings have excellent heat resistance. Furthermore, the surface of PAI coatings is perfect without bubbling, desquamating and cracking when it is heated for 2 hour at 250◦C in turn three cycles.


2017 ◽  
Vol 49 ◽  
pp. 1-9 ◽  
Author(s):  
S. Nallusamy ◽  
A. Karthikeyan

Recent research scenario reveals that the amalgamations of micro and nanoceramic fillers into fiber reinforced polymer composites have improved their performances in an excellent manner. In this research work, an investigation was attempted at in analyzing the wear behavior of glass fiber reinforced with epoxy resin using granite powder as a filler material in varying weight percentage ranging from 0-5%. Structural morphology of the prepared laminates was studied using SEM. Epoxy resin which was taken as matrix material was reinforced with a combination of chopped and woven roving mat glass fibers. Pin on disc method was applied for completing the wear test at different constraints of load, sliding distance and velocity for the investigation. Influence of granite powder in the composite was synthesized by calculating the specific wear rate and weight loss occurring at varying speed and normal load were applied on it. On examining by SEM worn surface wear rate of the prepared laminate at 5 wt% of granite provided better wear resistance as compared to other compositions and characterizations of worn surfaces.


Author(s):  
Khalid Mohammed Khalifah

This research aims to study the addition of nanoclays on unsaturated polyester (UP) and epoxy resin (EP) as filling and by weight percentage (2%, 4% and 6%) to this mixture and then study the extent of the effect of this addition on wear rate of the composites’ material where three loads were adopted (10, 15 and 20[Formula: see text]N), respectively, on the iron hard disk (269 HB) and copper hard disk of 111[Formula: see text]HB for the resin before and after adding the clays, where the approved sliding velocities were 4.1887, 3.1415 and 2.0943[Formula: see text]m/sec, respectively, and the test duration was 10 min on the test disc. Immersion of samples in the water for 2, 4, 6 and 8 weeks showed a clear improvement in the wear rate and tear values of dry and submerged conditions in a water under different conditions of load change, slipping speed, time and temperature stability after adding the nanoclays to the polymer.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2011 ◽  
Vol 71-78 ◽  
pp. 3591-3594 ◽  
Author(s):  
Xiao Lu Wang ◽  
Xiao Xiong Zha

Experimental results on tensile mechanics properties of GFRP bars at high temperatures are present in this paper. Thirty commercially produced GFRP tensile specimens of 8mm diameter were tested at high temperature ranging from 10°Cup to 500°C. Tensile test result indicates that, the ultimate tensile stress has significant reduction at two temperature zones, one is glass transition temperature of epoxy resin (80-120°C), with strength degradation 22%, the second is the soften temperature of glass fibers(about 400°C), the strength decrease drastically with almost linear rate and remained 33% residual strength at 500°C. The elastic modulus remained unchanged until glass transition temperature of epoxy resin, and the modulus declined linearly with the temperature elevating. Stress-strain relationships of GFRP bars exhibit liner performance even at high temperatures.


2011 ◽  
Vol 13 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Maria Wladyka-Przybylak ◽  
Dorota Wesolek ◽  
Weronika Gieparda ◽  
Anna Boczkowska ◽  
Ewelina Ciecierska

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.


2019 ◽  
Vol 22 (2) ◽  
pp. 143-150
Author(s):  
Hussain J. M. Al-Alkawi ◽  
Abduljabbar Owaid Hanfesh ◽  
Saja Mohammed Noori Mohammed Rauof

This research is devoted to study the influence of different weight percent concerning to the additions of Ti and Cu on mechanical and tribological properties of AA6061. The composite materials consist of different weight percentage of Ti (0.2, 0.4, and 0.6) wt% and constant weight percentage of Cu (0.2) wt% which were fabricated by liquid metallurgy route technique. Microstructural characterization and phases have been examined by using SEM (scanning electron microscopic).SEM examination showed uniform distribution of nano Ti and Cu in AA6061. The consequences of mechanical tests demonstrated clear enhancement in mechanical properties, such as ultimate tensile strength, yield strength, young modulus, ductility% and hardness at additive percentage of 0.4% Ti+0.2%Cu nano particles incorporated into molten AA6061. Percentage of enhancement ultimate tensile strength is about 73.3%, yield strength about 82.7%, young modulus is about 21.2%, the  Vickers hardness about 42.6% and the decreasing in ductility was about 25.2% compared with the metal matrix (AA6061). The wear rate test was performed by using pin on disc rig for both hybrid nano composite and base metal (AA6061) under various loads (10,15and 20) N with sliding speed (1.282) m/sec at a (10) min’s time. The results showed a decrease in wear rate at 0.4%Ti+0.2%Cu compared with the base metal (AA6061). Improvement percentage of wear rate is about 105% at 20 N load.


Sign in / Sign up

Export Citation Format

Share Document