Downhole Fluid Analysis During Wellbore Sampling at High Temperatures Using a Pyroelectric Array Spectrometer

2021 ◽  
Vol 73 (05) ◽  
pp. 41-43
Author(s):  
Emeakpo Ojonah

While the world is transitioning into a greener and less-carbon-rich energy source, the fact remains that there is a growing need for exploration and production of hydrocarbons in previously untapped resources. These frontier reservoirs, while extremely hot, are prolific and make the footprint of the exploration activity much smaller than shallower drilling, which would require many more wells to deliver the same amount of hydrocarbon. These frontier wells, classified as high-pressure/high-temperature (HP/HT) wells, are defined as wells with reservoir or bottomhole temperatures higher than 300°F and which require pressure-control equipment with a rating above 10,000 psi. HP/HT wells can be found offshore in the North Sea and Gulf of Mexico, or on land—as seen recently in the Gongola Basin. Fluid identification, which is a critical process in fluid sampling, continues to be a challenge in temperatures above 350°F. At temperatures up to 450°F, fluid identification is currently achieved by bubblepoint and compressibility measurements, which cannot quantitatively measure contamination levels of the subject sample fluid. A possible solution to this problem would involve using pyroelectric detectors in the process of estimating a property of a downhole fluid. The method and apparatus in this approach involves exposing a fluid to modulated light downhole and sensing changes in the intensity of infrared radiation from the downhole fluid, to estimate the level of filtrate contamination and other properties. The pyroelectric detector senses changes in the intensity of light by con-verting the transient changes in temperature of its detector and performs the spectroscopic fluid analysis by optically filtering the light allowed to impinge on it, converting the changes in temperature of the pyroelectric detector to a signal which can then be used to estimate the property of the downhole fluid. If successfully implemented, this would enable the wireline-logging industry to develop an optical fluid analyser capable of quantitatively measuring fluid contamination levels in high-temperature (greater than 300°F) environments. Theory Pyroelectric infrared detectors (PIR) convert the changes in incoming infrared light to electric signals. Pyroelectric materials are characterized by having spontaneous electric polarization, which is altered by temperature changes as infrared light illuminates the elements. Pyroelectric detectors (Fig. 1) are thermal detectors, meaning they produce a signal in response to a change in their temperature. Below a case temperature (Tc) known as the Curie point, ferroelectric materials such as lithium tantalate exhibit a large spontaneous electrical polarization. If the temperature of such a material is altered, for example by incident radiation, the polarization changes. This change in polarization may be observed as an electrical signal when electrodes are placed on opposite faces of a thin slice of the material to form a capacitor. When the polarization changes, if the external impedance is comparatively high, the charges induced in the electrodes can be made to produce a voltage across the slice. The sensor will only produce an electrical output signal when the temperature changes; that is, when the level of incident-radiation changes.

Alloy Digest ◽  
1975 ◽  
Vol 24 (8) ◽  

Abstract POTOMAC is a general-purpose, low-carbon, chromium-molybdenum-tungsten hot-work steel. It has excellent resistance to shock and heat checking after repeated heating and cooling. Potomac is suitable for hot-work applications involving severe conditions of shock and sudden temperature changes. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-290. Producer or source: Allegheny Ludlum Corporation.


2011 ◽  
Vol 311-313 ◽  
pp. 953-956
Author(s):  
Hao Chen ◽  
Gang Tao

In order to study dynamic response of metal, this paper makes use of theoretical formula to investigate changes of temperature and grain size on steel target after the penetration of copper jet based on data gathered from the experiments. Deformed target penetrated by copper jet could be divided into superplastic deformation zone and normal deformation zone according to the different microstructure. Temperature distribution of each deformation zones is in turn calculated by two constitutive equations. The results indicate that areas with high temperature concentrate on the narrow zone near the penetrated channel. Then, the calculation of grain size conforms to the observation. It is obviously proven that the method used in this paper is trustworthy for calculating the changes of temperature and grain size of target caused by penetration.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1028
Author(s):  
Na Zhao ◽  
Qijing Lin ◽  
Kun Yao ◽  
Fuzheng Zhang ◽  
Bian Tian ◽  
...  

The optical fiber temperature and refractive index sensor combined with the hollow needle structure for medical treatment can promote the standardization of traditional acupuncture techniques and improve the accuracy of body fluid analysis. A double-parameter sensor based on fiber Bragg grating (FBG) is developed in this paper. The sensor materials are selected through X-ray diffraction (XRD) analysis, and the sensor sensing principle is theoretically analyzed and simulated. Through femtosecond laser writing pure silica fiber, a high temperature resistant wavelength type FBG temperature sensor is obtained, and the FBG is corroded by hydrofluoric acid (HF) to realize a high-sensitivity intensity-type refractive index sensor. Because the light has dual characteristics of energy and wavelength, the sensor can realize simultaneous dual-parameter sensing. The light from the lead-in optical fiber is transmitted to the sensor and affected by temperature and refractive-index; then, the reflection peak is reflected back to the lead-out fiber by the FBG. The high temperature response and the refractive index response of the sensor were measured in the laboratory, and the high temperature characteristics of the sensor were verified in the accredited institute. It is demonstrated that the proposed sensor can achieve temperature sensing up to 1150 °C with the sensitivity of 0.0134 nm/°C, and refractive sensing over a refractive range of 1.333 to 1.4027 with the sensitivity of −49.044 dBm/RIU. The sensor features the advantages of two-parameter measurement, compact structure, and wide temperature range, and it exhibits great potential in acupuncture treatment.


1947 ◽  
Vol 15 (1-2) ◽  
pp. 18-23
Author(s):  
F. Steghart

It has recently been claimed that in modern high temperature-short time pasteurization plant fluctuations in temperature of the order of 1° F./sec. are unusual and probably artefacts, and that an instantaneous drop is certainly fictitious.It has, nevertheless, been shown that such rapid drops in temperature do in fact occur frequently in high temperature-short time plants of the type investigated. The plant investigated was not of the latest design incorporating devices for speeding up the control by injecting steam directly into the hot-water pipe.Temperature changes of the order of those in question were first observed by Mattick & Hiscox(1) of the National Institute for Research in Dairying, who carried out tests on pasteurization plant using a small mirror galvanometer with a very short time constant. The maximum rates of change were, however, not observed.


2014 ◽  
Vol 89 ◽  
pp. 88-93
Author(s):  
Marek Boniecki ◽  
Zdzislaw Librant ◽  
Władysław Wesołowski ◽  
Magdalena Gizowska ◽  
Marcin Osuchowski ◽  
...  

Fracture toughness KIc and four-point bending strength σc at high temperature (up to 1500 °C) of Y2O3 ceramics of various grain size were measured. The ceramics were prepared by pressureless air sintering and next hot isostatic pressing of high purity (99.99%) Y2O3 powder. Relative density of about 99 % was achieved. Photos of microstructures revealed small pores distributed mainly inside grains. For smallest grain size (2 - 9 μm) ceramics KIc and σc are almost constant from 20 ° to 1200 °C and next they decrease. For biggest grain size (about 44 μm) they increase up to 800 °C and next they keep constant up to 1200 °C. The micrographs analyses of fracture surfaces indicated that transgranular mode of fracture at room temperature changes to almost intergranular at higher temperatures.


1958 ◽  
Vol 15 (6) ◽  
pp. 1189-1211 ◽  
Author(s):  
L. M. Dickie

Upper lethal temperatures of scallops are raised 1 °C. by each increase of 5 °C. in acclimation temperature. Acclimation upwards is fairly rapid (average 1.7 °C. per day over part of the range). Loss of acclimation to high temperature is slow, and appears to take as long as 3 months. There is a winter-to-summer decline in lethal temperature. It appears that naturally occurring water temperatures over 23.5 °C. will be lethal to scallops and directly responsible for mortalities. Temperatures over 21 °C. may also be a direct cause of mortalities but only in special circumstances could mortalities occur as a direct result of temperatures below this. In the "sub-lethal" temperature range, sudden temperature changes upward or downward may so reduce scallop mobility as to make them easier prey to enemies. In this way sudden temperature change could be an indirect cause of increased mortality.


1986 ◽  
Vol 14 (2) ◽  
pp. 95-100 ◽  
Author(s):  
R Bettini ◽  
E Grossi ◽  
P Rapazzini ◽  
G Giardina

One hundred and twenty adult patients with high temperatures (≥38°C) brought about by influenza viruses or other conditions were randomly treated with two different antipyretics: a) a 25 mg sodium diclofenac tablet (Novapirina) every 12 hours for 2 consecutive days; b) a 500 mg tablet of acetylsalicylic acid (Aspirin) every 8 hours for 2 consecutive days. Antipyretic action (assessed at 6 hours following the first administration) was found to be equally rapid and consistent in both cases but significantly longer-lasting in the Novapirina-treated group than the Aspirin-treated group (p < 0·01). Mean temperature changes over the 48 hours of observation and the over-all judgement on the antipyretic effect expressed at the end of each day of treatment were similar for both groups and good in all cases. The antiphlogistic-painkilling properties of both drugs were found to be effective in improving the symptomatology accompanying the high temperature during the course of the bout of influenza. The effectiveness/tolerability ratio was found to be satisfactory for both groups: only one case of gastric intolerance to Novapirina was recorded and five cases of gastric intolerance to Aspirin.


1990 ◽  
Vol 112 (3) ◽  
pp. 266-272 ◽  
Author(s):  
H. Song ◽  
A. Moshaiov

The axisymmetric distortion in girth-welded pipes is studied in this paper. A model is developed based on the fact that only a small part of the pipe near the welding arc undergoes high temperature changes, and thus behaves thermo-elastic-plastically, while the rest of the structure is elastic in nature and may, at most, have some thermo-elastic effects. The model is shown to match Finite Element Method in predicting the overall approximated axisymmetric shrinkage in girth-welded pipes. A qualitative agreement with published analytical and experimental results is achieved as well.


1981 ◽  
Vol 44 (334) ◽  
pp. 141-146 ◽  
Author(s):  
C. Th. Papavassiliou ◽  
M. E. Cosgrove

AbstractThe development of low- and hightemperature alteration products in a 23 m section of ocean-floor basalts is described. Analcime, calcite and dioctahedral smectite are ubiquitous. Trioctahedral smectite, smectite-chlorite mixed layers, chabazite and scolecite occur in the deeper sections with Fe3+ oxides/hydroxides progressively becoming more abundant in the upper regions. The upper layers of the sequence show marked chemical reduction. High-temperature chemical changes include Na and Mg enrichment accompanied by Ca and Fe2+ losses. Superimposed low temperature changes include gains in Fe3+ K, Li, and Rb, and losses in Na, Ca, and Fe2+ Many trace elements also show consistent behaviour.


2012 ◽  
Vol 535-537 ◽  
pp. 1299-1303
Author(s):  
Hui Bo Wang ◽  
Kai Tong ◽  
Mei Ting Wang ◽  
Chao Cong Guo

When the temperature is changed, due to the influence of the thermal expansion effect and thermo-optic effect, the thickness and refractive index of each layer of medium of photonic crystal will be Varied. As shown by optical resonators theory, the drift amount of the wavelength has a linear relationship with the variation of temperature. The electron beam lithography technology (EBL) and induction coupling plasma(ICP) etching were used for making the PCs with 1550nm central wavelength. An experiment mode is constructed for analyzing temperature characteristic of one-dimensional PCs, and then PCs is experimented at low temperature and high temperature. It can be found by experiment that, as the temperature changes, the central wavelength of photonic crystal has a linear relationship with the temperature, the drift amount of central wavelength at the low temperature is 0.072nm/°C,the drift amount at the high temperature is 0.076nm/°C,and the 3dB bandwidth of transmission spectrum of photonic crystal has no significant change, the spectral shape is changed very little.


Sign in / Sign up

Export Citation Format

Share Document