Novel H2S Scavenger Testing Methodology to Meet the Ever-Present Challenge of Simulating Scavenger Application Methods with Laboratory Testing Protocols

2021 ◽  
Author(s):  
Grahame Taylor ◽  
Jonathan Wylde ◽  
Bridgette Allan

Abstract The design methodology for H2S scavengers relies heavily on developing a test protocol that most closely simulates field applications. These include gas contact towers, direct gas production injection and multiphase treatments, such as subsea umbilical delivery lines to sea floor well heads, hydrocarbon flow lines and sour storage tank treatments. There are very few testing standards and while there are industry accepted methods, the novel methods presented fill the gaps that exist. A thorough review is made of existing test methodologies such as the static gas breakthrough test and the multiphase Parr Autoclave. Each of these has become an accepted, albeit unofficial, industry standard. Novel methods recently developed comprise the "Direct Injection Laboratory Simulator" (DILS) which, as the name suggests, represents a laboratory method of evaluating a direct gas injection application. Also included is a unique modification of the gas breakthrough test, known as the "miniature Ultrafab tower" which simulates a regenerative tower-based system, commonly in operation in the field. The results showed fascinating validation of gas direct injection and dynamic tower interactions. In some cases, the results are as expected and in others fresh insight has been obtained into any observed discrepancy between a scavenger's field performance and how it performs in the laboratory development studies. In the case of the "miniature Ultrafab tower", this ingenious piece of equipment has been proven to accurately simulate the packing typically seen in the gas contactor to enhance gas/liquid interaction as well as provides the ability to continually replenish the tower with fresh chemical during the test using an accurately controlled flow rate from an HPLC pump. These have been shown to be vitally important parameters for accurate lab to field correlation and are uniquely available from this test, for example gleaning the minimum flow rate of fresh scavenger which can control the H2S concentration to the predetermined level; exactly as is done in field operations. This novel apparatus also has a separator chamber where the spent chemical can be collected, analyzed and evaluated, exactly as is done in a field trial for a dynamic contact gas tower. Armed with a new series of test methodologies, the development of H2S scavengers can enjoy a much higher success rate in the all-important transition from laboratory to field. The test methods also give invaluable tools to trouble shooting and investigate unexpected deficiencies in products which have in the past performed as expected. This includes providing a validation method for changes and enhancements desired during the manufacture process and raw material sourcing for chemical scavengers.

2009 ◽  
Vol 9 (4) ◽  
pp. 469-475
Author(s):  
T. Turtiainen

Radon is one of the contaminants that sometimes impair the water quality of wells, especially those drilled in bedrock. Domestic radon removal units based on aeration have been commercially available for more than ten years. In order to determine how effectively these units remove radon a new test protocol applying frequent sampling while letting 100 litres of water flow, was developed. This way, removal efficiencies can be more accurately calculated and possible malfunctions detected. Seven models of domestic aerators designed for removing radon from household water were tested. The aerators were based on diffused bubble aeration, spray aeration or jet aeration. The average removal efficiencies for 100 litres with a medium flow rate were 86–100% except for a unit that circulated the aerated water back to the well that had removal efficiency of 80% at the maximum. By conducting a questionnaire study usual problems related to the aeration units were localized and recommendations on maintenance and installation are given accordingly.


2021 ◽  
Vol 11 (2) ◽  
pp. 579
Author(s):  
Max Schmid ◽  
Selina Hafner ◽  
Günter Scheffknecht

The conversion of biogenic residues to fuels and chemicals via gasification and synthesis processes is a promising pathway to replace fossil carbon. In this study, the focus is set on sewage sludge gasification for syngas production. Experiments were carried out in a 20 kW fuel input bubbling fluidized bed facility with steam and oxygen as gasification agent. In-situ produced sewage sludge ash was used as bed material. The sensitivity of the key operation parameters gasifier temperature, oxygen ratio, steam to carbon ratio, and the space velocity on the syngas composition (H2, CO, CO2, CH4, CxHy, H2S, COS, NH3, and tars) was determined. The results show that the produced syngas has high H2 and CO concentrations of up to 0.37 m3 m−3 and 0.18 m3 m−3, respectively, and is thus suitable for synthesis of fuels and chemicals. By adjusting the steam to carbon ratio, the syngas’ H2 to CO ratio can be purposely tailored by the water gas shift reaction for various synthesis products, e.g., synthetic natural gas (H2/CO = 3) or Fischer–Tropsch products (H2/CO = 2). Also, the composition and yields of fly ash and bed ash are presented. Through the gasification process, the cadmium and mercury contents of the bed ash were drastically reduced. The ash is suitable as secondary raw material for phosphorous or phosphate fertilizer production. Overall, a broad database was generated that can be used for process simulation and process design.


2002 ◽  
Vol 85 (4) ◽  
pp. 925-932 ◽  
Author(s):  
Mark Vandeven ◽  
Thomas Whitaker ◽  
Andy Slate

Abstract Processed food manufacturers often use acceptance sampling plans to screen out lots with unacceptable levels of contamination from incoming raw material streams. Sampling plan designs are determined by specifying sample sizes, sample preparation methods, analytical test methods, and accept/reject criteria. Sampling plan performance can be indicated by plotting acceptance probability versus contamination level as an operating characteristic (OC) curve. In practice, actual plan performance depends on the level of contamination in the incoming lot stream. This level can vary considerably over time, among different crop varieties, and among locales. To better gauge plan performance, a method of coupling an OC curve and crop distributions is proposed. The method provides a precise probabilistic statement about risk and can be easily performed with commercial spreadsheet software.


2019 ◽  
Vol 946 ◽  
pp. 169-173
Author(s):  
A.A. Biryukova ◽  
T.D. Dzhienalyev ◽  
A.V. Boronina

The purpose of the work is the obtaining of magnesium silicate ceramic proppants, based on ultrabasic overburden rocks of Kempirsai deposits of chromite ores (Kazakhstan). The chemical and mineralogical composition of ultrabasic overburden rock was studied by chemical, microscopic and X-ray diffraction analyzes. It is established that the main mineral of ultrabasic overburden rocks is serpentine, present in the form of fibrous chrysotile and lamellar antigorite. In the impurities are iron oxides and hydroxides, chrome spinel, carbonates, quartz. Assessment of the use of overburden rocks as a raw material for the production of ceramic proppants was carried out. The sintering interval of overburden rocks was determined at 1280-1300 °C. The sintering firing optimum temperature of ceramics, based on this type of raw material is 1300 °C. It is established that to harden the structure of magnesium silicate ceramic it is necessary to activate the raw material thermally at a temperature of 1000 °C. The influence of binder type on the properties of magnesium silicate proppants, based on the Kempirsai serpentinites was studied. Magnesium silicate proppants, based on ultrabasic overburden rocks, were obtained with the following properties: apparent density – 1.6 g/cm3, strength resistance (52 MPa) – 14%, sphericity and roundness – 0.8; chemical resistance (hydrochloric acid) – 98%, static strength of the fraction 16/20 - 72–118 N/granule. The field of application is oil and gas production, metallurgy and ceramic industries.


2014 ◽  
Vol 953-954 ◽  
pp. 284-289
Author(s):  
Jing Hui Liu ◽  
Wi Di Zhang ◽  
Fang Yin ◽  
Jing Liu ◽  
Xing Ling Zhao ◽  
...  

In order to obtain gas potential and characteristics of ginger skin in biogas fermentation as raw material, and explore effect of different treatments on properties of biogas fermentation with ginger skin. At the temperature of 30°C, biogas fermentations with ginger skin were treated in two ways (natural decay and mixed with pig manure). Experiments were respectively set five different treatments (direct fermentation, natural decay, adding pig manure after natural decay (TS content of pig manure / TS content of ginger skin were respectively 1:1, 2:1 and 3:1)). The results showed gas potential of ginger skin and total gas production were respectively 118.08ml/gTS and 320ml, after the 11th day, the fermentation was in a serious acidification, as a result of stopping gas production. The fermentations with ginger skin which went through natural decay and adding pig manure after natural decay can both eliminate acidification which caused by use of ginger skin directly, and conduce to the fermentation with ginger skin. The fermentation with ginger skin which went through natural decay had higher degradation rate of TS, total gas production, TS gas potential and methane content than fermentation with ginger skin directly.


Author(s):  
Arup Kumar Biswas ◽  
Wasu Suksuwan ◽  
Khamphe Phoungthong ◽  
Makatar Wae-hayee

Underground Coal Gasification (UCG) is thought to be the most favourable clean coal technology option from geological-engineering-environmental viewpoint (less polluting and high efficiency) for extracting energy from coal without digging it out or burning it on the surface. UCG process requires only injecting oxidizing agent (O2 or air with steam) as raw material, into the buried coal seam, at an effective ratio which regulates the performance of gasification. This study aims to evaluate the influence of equivalent ratio (ER) on the flow and combustion characteristics in a typical half tear-drop shape of UCG cavity which is generally formed during the UCG process. A flow modeling software, Ansys FLUENT is used to construct a 3-D model and to solve problems in the cavity. The boundary conditions are- (i) a mass-flow-inlet passing oxidizer (in this case, air) into the cavity, (ii) a fuel-inlet where the coal volatiles are originated and (iii) a pressure-outlet for flowing the product Syngas out of the cavity. A steady-state simulation has been run using k-? turbulence model. The mass flow rate of air varied according to an equivalent ratio (ER) of 0.16, 0.33, 0.49 and 0.82, while the fuel flow rate was fixed. The optimal condition of ER has been identified through observing flow and combustion characteristics, which looked apparently stable at ER 0.33. In general, the flow circulation mainly takes place around the ash-rubble pile. A high temperature zone is found at the air-releasing point of the injection pipe into the ash-rubble pile. This study could practically be useful to identify one of the vital controlling factors of gasification performance (i.e., ER impact on product gas flow characteristics) which might become a cost-effective solution in advance of commencement of any physical operation.


2021 ◽  
Vol 1 ◽  
pp. 67-74
Author(s):  
Iwan Febrianto ◽  
Nelson Saksono

The Gas Gathering Station (GGS) in field X processes gas from 16 (sixteen) wells before being sent as selling gas to consumers. The sixteen wells have decreased in good pressure since 2011, thus affecting the performance of the Acid Gas Removal Unit (AGRU). The GGS consists of 4 (four) main units, namely the Manifold Production/ Test, the Separation Unit, the Acid Gas Removal Unit (AGRU), the Dehydration Unit (DHU). The AGRU facility in field X is designed to reduce the acid gas content of CO2 by 21 mol% with a feed gas capacity of 85 MMSCFD. A decrease in reservoir pressure caused an increase in the feed gas temperature and an increase in the water content of the well. Based on the reconstruction of the design conditions into the simulation model, the amine composition consisting of MDEA 0.3618 and MEA 0.088 wt fraction to obtain the percentage of CO2 in the 5% mol sales gas. The increase in feed gas temperature up to 146 F caused foaming due to condensation of heavy hydrocarbon fraction, so it was necessary to modify it by adding a chiller to cool the feed gas to become 60 F. Based on the simulation, the flow rate of gas entering AGRU could reach 83.7 MMSCFD. There was an increase in gas production of 38.1 MMSCFD and condensate of 1,376 BPD. Economically, the addition of a chiller modification project was feasible with the economical parameters of NPV US$ 132,000,000, IRR 348.19%, POT 0.31 year and PV ratio 19.06.


2015 ◽  
Vol 3 (1) ◽  
pp. 238-241
Author(s):  
Noor Azrieda A.R ◽  
Salmiah U ◽  
Rahim S

The natural durability of timber may be defined as ‘inherent resist ance of timber to attackby wood deteriorat ion agents such as wood decay ing fungi and wood destroying insects’. In Malay sia, natural durabilit y of t imber is det ermined using a ‘gravey ard’ test . The average time taken for this test is more than 10 years. The results of this test method donot provide information on longevity (service life) either out of ground contact, or inother geographical locations. Comparison of natural durability requires the use ofstandard test method where for example in Europe, the accepted laboratory method is EN350-1. This paper briefly describes the rating of natural durability based on comparisonresults of the two test methods stated i.e the exterior graveyard test and the interior laboratory test.


2018 ◽  
Vol 37 (4) ◽  
pp. 357-363 ◽  
Author(s):  
Ling-zhi Yang ◽  
Tao Jiang ◽  
Guang-hui Li ◽  
Yu-feng Guo ◽  
Feng Chen

AbstractWith the increase of hot metal ratio in electric arc furnace (EAF) steelmaking process, physical sensible heat and chemical latent heat of gas increased significantly. As EAF raw material condition is similar to basic oxygen furnace (BOF), and the condition of BOF gas waste heat utilization technology is mature, waste heat utilization technology in EAF steelmaking will be getting more and more attention. Scrap preheating and steam production as mature technology is the main way of EAF gas waste heat utilization. Power generation converted high temperature steam to electricity will further improve the EAF gas utilization value. The previous ways are to recycle physical sensible heat of EAF gas. To use chemical latent heat of gas, the secondary combustion technology is usually adopted to make CO fully burn into CO2. Coal gas production can fully recycle the chemical latent heat of gas theoretically, which is higher efficiency than other ways. Coal gas production needs a stable steelmaking process to stabilize high temperature gas. And the way need to develop EAF sealing technology, oxygen removal technology and gas purification technology, to make gas content meet the requirements of coal gas production in EAF steelmaking process.


2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


Sign in / Sign up

Export Citation Format

Share Document