Ultra-Low Dose Asphaltene Inhibitors for Offshore Applications: Myth or Reality

2021 ◽  
Author(s):  
Janaina Izabel Da Silva de Aguiar ◽  
Amir Mahmoudkhani ◽  
Samal Ibragimova

Abstract In recent years, long-distance subsea tiebacks have become a preferred field development option for deep and ultra-deepwater production. However, conditions such as lengthy umbilical systems, high pressures and variable temperatures conditions pose challenges for the continuous injection of various flow assurance chemicals. Severe operating conditions often require relatively high volumes of diluted inhibitors to be stored and injected offshore, resulting in high CAPEX costs for the installation of large topsides chemical storage tanks and their associated weight increases. Alliance Engineering estimates a deepwater platform's topsides installed costs are within the range of $35,000-$50,000/ton. It is possible to achieve significant capital cost savings on new platform designs if the dosage rates and subsequently offshore storage volumes of the highest usage production chemicals such as asphaltene inhibitors could be significantly reduced. This paper presents information on a new class of biosurfactants that are bio-based and eco-acceptable with potentials for development of ultra-low dose asphaltene inhibitors for offshore applications. Asphaltenes were extracted from chemical free crude oil samples and a curve of solubility with different ratios of heptane was obtained for each sample in order to determine the best conditions to perform the screening tests. A new class of glycolipid biosurfactants (GLP-U) was developed as an asphaltene dispersants effective at low concentrations for use in offshore applications. The new GLP-U biosurfactants are eco-acceptable and soluble in the organic solvents commonly used in offshore production chemicals. GLP-U were proved to be effective in dispersing and preventing precipitation of isolated asphaltenes at dosage rates as low as 25 mg/L (active substance), while for comparison a dodecylbenzesulfonic acid-based inhibitor provided inhibition at significantly higher concentrations (at least 40 times more).


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.



2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.



Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 536
Author(s):  
Kenneth A. Goldberg ◽  
Antoine Wojdyla ◽  
Diane Bryant

New, high-coherent-flux X-ray beamlines at synchrotron and free-electron laser light sources rely on wavefront sensors to achieve and maintain optimal alignment under dynamic operating conditions. This includes feedback to adaptive X-ray optics. We describe the design and modeling of a new class of binary-amplitude reflective gratings for shearing interferometry and Hartmann wavefront sensing. Compact arrays of deeply etched gratings illuminated at glancing incidence can withstand higher power densities than transmission membranes and can be designed to operate across a broad range of photon energies with a fixed grating-to-detector distance. Coherent wave-propagation is used to study the energy bandwidth of individual elements in an array and to set the design parameters. We observe that shearing operates well over a ±10% bandwidth, while Hartmann can be extended to ±30% or more, in our configuration. We apply this methodology to the design of a wavefront sensor for a soft X-ray beamline operating from 230 eV to 1400 eV and model shearing and Hartmann tests in the presence of varying wavefront aberration types and magnitudes.



Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 553
Author(s):  
Dimitra C. Banti ◽  
Manassis Mitrakas ◽  
Petros Samaras

A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5–3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.



Author(s):  
R.A. Gasumov ◽  
◽  
E.R. Gasumov ◽  

The article discusses the modes of movement of gas-liquid flows in relation to the operating conditions of waterlogged gas wells at a late stage of field development. Algorithms have been developed for calculating gas well operation modes based on experimental work under conditions that reproduce the actual operating conditions of flooded wells of Cenomanian gas deposits. The concept of calculating the technological mode of operation of gas wells with a single-row elevator according to the critical velocity of the upward flow is considered based on the study of the equilibrium conditions of two oppositely directed forces: the gravity of water drops directed downward and the lifting force moving water drops with a gas flow directed upward. A calculation was made according to the method of the averaged physical parameters of formation water and natural gas in the conditions of flooded Cenomanian gas wells in Western Siberia. The results of a study of the dependence of the critical flow rate of Cenomanian wells on bottomhole pressure and diameter of elevator pipes are presented.



2021 ◽  
Author(s):  
Matthew Grimes ◽  
Nico Van Rensburg ◽  
Stuart Mitchell

Abstract This paper presents on a non-invasive, IoT-based method for rapidly determining the presence and location of spontaneous leaks in pressurized lines transporting any type of product (e.g., oil, gas, water, etc.). Specific applications include long-distance transmission lines, gathering networks at well sites, and offshore production risers. The methodology combines proven negative pressure wave (NPW) sensing with advanced signal processing to minimize false positives and accurately identify the presence of small spontaneous leaks within seconds of their occurrence. In the case of long-distance transmission pipelines, the location of the leak can be localized to within 20-50 feet. The solution was commercialized in 2020 and has undergone extensive testing to verify its capabilities. It is currently in use by several operators, both onshore and offshore.



2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Swapnil A. Dharaskar ◽  
Kailas L. Wasewar ◽  
Mahesh N. Varma ◽  
Diwakar Z. Shende

A new class of green solvents, known as ionic liquids (ILs), has recently been the subject of intensive research on the extractive desulfurization of liquid fuels because of the limitation of traditional hydrodesulfurization method. In present work, eleven Lewis acid ionic liquids were synthesized and employed as promising extractants for deep desulfurization of the liquid fuel containing dibenzothiophene (DBT) to test the desulfurization efficiency. [Bmim]Cl/FeCl3was the most promising ionic liquid and performed the best among studied ionic liquids under the same operating conditions. It can remove dibenzothiophene from the model liquid fuel in the single-stage extraction process with the maximum desulfurization efficiency of 75.6%. It was also found that [Bmim]Cl/FeCl3may be reused without regeneration with considerable extraction efficiency of 47.3%. Huge saving on energy can be achieved if we make use of this ionic liquids behavior in process design, instead of regenerating ionic liquids after every time of extraction.



2020 ◽  
Vol 10 (1) ◽  
pp. 17-32
Author(s):  
Manuel Cabarcas Simancas ◽  
Angélica María Rada Santiago ◽  
Brandon Humberto Vargas Vera

The purpose of this article is to set out the benefits of using the dense phase gas transport in future projects in the Caribbean Sea and to verify that when operating pipelines at high pressures, more mass per unit of volume is transported, and liquid formation risks are mitigated in hostile environments and low temperatures.This study contains key data about gas production fields in deep and ultra-deep waters around the world, which serve as a basis for research and provide characteristics for each development to be contrasted with the subsea architecture proposed in this paper. Additionally, analogies are established between the target field (Gorgón-1, Kronos-1 and Purple Angel-1) and other offshore gas fields that have similar reservoir properties. Using geographic information systems, the layout of a gas pipeline and a subsea field architecture that starts in the new gas province is proposed.Finally, using a hydraulic simulation tool, the gas transport performance in dense phase is analyzed and compared with the conventional way of transporting gas by underwater pipelines, achieving up to 20 % in cost savings when dense phase is applied.



Author(s):  
Antoine Durocher ◽  
Gilles Bourque ◽  
Jeffrey M. Bergthorson

Abstract Accurate and robust thermochemical models are required to identify future low-NOx technologies that can meet the increasingly stringent emissions regulations in the gas turbine industry. These mechanisms are generally optimized and validated for specific ranges of operating conditions, which result in an abundance of models offering accurate nominal solutions over different parameter ranges. At atmospheric conditions, and for methane combustion, a relatively good agreement between models and experiments is currently observed. At engine-relevant pressures, however, a large variability in predictions is obtained as the models are often used outside their validation region. The high levels of uncertainty found in chemical kinetic rates enable such discrepancies between models, even as the reactions are within recommended rate values. The current work investigates the effect of such kinetic uncertainties in NO predictions by propagating the uncertainties of 30 reactions, that are both uncertain and important to NO formation, through the combustion model at engine-relevant pressures. Understanding the uncertainty sources in model predictions and their effect on emissions at these pressures is key in developing accurate thermochemical models to design future combustion chambers with any confidence. Lean adiabatic, freely-propagating, laminar flames are therefore chosen to study the effect of parametric kinetic uncertainties. A non-intrusive, level 2, nested sparse-grid approach is used to obtain accurate surrogate models to quantify NO prediction intervals at various pressures. The forward analysis is carried up to 32 atm to quantify the uncertainty in emissions predictions to pressures relevant to the gas turbine community, which reveals that the NO prediction uncertainty decreases with pressure. After performing a Reaction Pathway Analysis, this reduction is attributed to the decreasing contribution of the prompt-NO pathway to total emissions, as the peak CH concentration and the CH layer thickness decrease with pressure. In the studied lean condition, the contribution of the pressure-dependent N2O production route increases rapidly up to 10 atm before stabilizing towards engine-relevant pressures. The uncertain prediction ranges provide insight into the accuracy and precision of simulations at high pressures and warrant further research to constrain the uncertainty limits of kinetic rates to capture NO concentrations with confidence in early design phases.



2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.



Sign in / Sign up

Export Citation Format

Share Document