Slickline Descaling Technology Delivers Cost Savings Over Coiled Tubing

2021 ◽  
Author(s):  
Tawakol Abdallah ◽  
Abdullah Al-Fawwaz ◽  
Galal Eldaw ◽  
Wael Abdallah

Abstract Al-Khafji Joint Operations (KJO), a joint operation representing both Saudi and Kuwaiti energy interests in the divided zone, recently encountered obstructions in their offshore field. Routine pressure and temperature surveys revealed that an increasing number of wells were developing scale. The operation required an efficient mechanical tool to clean out extensive accumulated scale bridging within a vertical production string and restore full wellbore accessibility. The well had been previously shut down from operations for five years. The operator considered using a coiled tubing (CT) unit or workover rig to clear the scale but sought a more cost-effective solution. The operator chose a slickline wellbore cleanup and debris breaking tool, which is an impact-driven tool designed to break up scale deposits in a cost-effective, efficient manner. It is jarred down mechanically in the well, each jar applying a short-duration torque via the unique, helically split torque sub. The well's accessible tubing inner diameter was reduced from 2.9-in, nominal to 2-in, at the wireline reentry guide depth. To combat this issue, the slickline technology was deployed with subs increasing in outer diameter (OD) from 1.9-in. to 2.5-in. OD tools. The special features of the wellbore cleanup and debris breaking tool made it better adapted to the well environment and greatly increased the descaling efficiency. Thirty runs enabled the team to clear the scale accumulations down to 3,652 ft (1113 m). The operator confirmed integrity of the tubing at the end of the slickline operation, allowing the slickline team to access the wellbore and run a memory pressure temperature survey to check the well deliverability. The implementation of the wellbore cleanup and debris breaking tool enabled the operator to reduce inventory and overall descaling time. Microscopic and Fourier transform infrared analyses of the scale determined it was calcite (CaCO3) with some small hydrocarbon impurities from either oil or diesel. The descaling rate and cost savings achieved using the wellbore cleanup and debris breaking tool has since resulted in the operator adopting this technology and looking into the feasibility of starting a campaign for scale removal in more than 20 wells. The presence of calcite as a scaling agent is potentially due to the carbonate-saturated formation water and the loss of carbon dioxide from this water to the hydrocarbon phase as pressure decreases. Creating a detailed reservoir characterization that defines fracture orientation, relative aperture produced fluid analysis, and rock properties can help minimize the effect of scale at an early stage. Continuous well monitoring can lead to early identification of scale and determine the need for chemical treatment or further mechanical interventions. This case study demonstrates the benefits of using this wellbore cleanup and debris breaking tool as the first method of mechanical descaling.

2021 ◽  
Author(s):  
Olalere Sunday Oloruntobi ◽  
Prasanna Kumar Chandran ◽  
M Azuan Abu Bakar ◽  
Nurul Nazmin Zulkarnain ◽  
Hasrizal A Rahman ◽  
...  

Abstract Operators are faced with never-ending well integrity issues relating to tubing leaks. This situation is particularly important in oil and gas wells that are producing in corrosive environments. When a well can no longer be safely produced due to well integrity issues relating to tubing leaks, an expensive workover is often performed to restore the tubing integrity. To improve the economics of a well intervention involving tubing leak repairs, a new cost-effective method is being proposed. The novel technology involves the installation of reinforced thermoplastic pipe (RTP) inside the existing tubing to isolate multiple leaks using a coiled tubing unit or an E-line. The RTP is engineered for downhole applications with custom designed connectors and accessories. It is designed to handle corrosive fluids (CO2 and H2S) and prevent downhole erosion caused by sand production. The RTP can be used to eliminate tubing – annulus communication in both producers and injectors with full compliance to well integrity management system. The results of the field trial in a gas injector well in Malaysia basin show that the RTP can provide a reliable means of restoring and enhancing the production of oil and gas with considerable cost savings (up to 80% cost reduction when compared to a conventional workover). In most cases, the high cost associated with a conventional workover can make it uneconomical when compared to the expected hydrocarbon recovery from the well, resulting in production deferment (well shut-in). The RTP can significantly increase the viability of repairing a larger percentage of the wells that are shut-in due to the loss of tubing integrity when the hydrocarbon recovery from the well is insufficient to justify a full workover. The significant cost savings provided by the RTP would dramatically improve economics and would likely result in more reserves recovered. The RTP also has a smoother surface that contributes to minimum friction and reduces the risk of scales formation when compared to the steel tubing of the same internal diameter.


2008 ◽  
Vol 56 ◽  
pp. 459-468 ◽  
Author(s):  
Thomas Monnier ◽  
Philippe Guy ◽  
Mickaël Lallart ◽  
Lionel Petit ◽  
Daniel Guyomar ◽  
...  

Recent research in Structural Health Monitoring (SHM) showed the ability of guidedwave based sensors networks to detect, localize and classify damage in its early stage. But, most of them still require the wiring of numerous devices. To avoid this technical restraint, particularly in airborne structures, wireless SHM system offer mass and cost savings, but powering the devices remains heavy. In this paper, actuators and sensors are powered by piezoelectric microgenerators, which harvest energy from the environing mechanical stress. The efficiency of the extraction process is optimized by a non-linear processing of the piezovoltage named Synchronized Switch Harvesting. Previous work showed that such techniques provide a stand-alone power source, whose performances meet the requirements of Wireless Transmitters and Receivers. Indeed, each sensing node has to feature its own power source in order to acquire its logical autonomy and thus, provide decentralized intelligence to SHM network. Although the diagnosis will be centralized, the amount of data passed to the central core of the network should be reduced to preserve a positive energy balance of the node. Various algorithms are compared in terms of sensitivity and computational cost, the latter directly impacting the consumption.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


2011 ◽  
Vol 14 (2) ◽  
Author(s):  
Thomas G Koch

Current estimates of obesity costs ignore the impact of future weight loss and gain, and may either over or underestimate economic consequences of weight loss. In light of this, I construct static and dynamic measures of medical costs associated with body mass index (BMI), to be balanced against the cost of one-time interventions. This study finds that ignoring the implications of weight loss and gain over time overstates the medical-cost savings of such interventions by an order of magnitude. When the relationship between spending and age is allowed to vary, weight-loss attempts appear to be cost-effective starting and ending with middle age. Some interventions recently proven to decrease weight may also be cost-effective.


2000 ◽  
Vol 35 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Robert A. Quercia ◽  
Ronald Abrahams ◽  
C. Michael White ◽  
John D'Avella ◽  
Mary Campbell

A pharmacy-managed anemia program included distribution and clinical components, with the goal of making epoetin alpha therapy for hemodialysis patients more cost-effective. The Pharmacy Department prepared epoetin alpha doses for patients in unit-dose syringes, utilizing and documenting vial overfill. Pharmacists dosed epoetin alpha and iron (oral and intravenous) per protocol for new and established patients. Baseline data were obtained in 1994, one year prior to implementation of the program, and were re-evaluated in 1995 and 1998. Cost avoidance from utilization of epoetin alpha vial overfill in 1995 and 1998 was $83,560 and $91,148 respectively. In 1995 and 1998, cost avoidance from pharmacy management of anemia was $191,159 and $203,985 respectively. The total cost avoidance from 1995 through 1998 was estimated at $1,018,638. The number of patients with hematocrits under 31% decreased from 32% in 1994 to 21% and 14% in 1995 and 1998 respectively. We conclude that a pharmacy-managed anemia program for hemodialysis patients results in significant cost savings and better achievement of target hematocrits.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mitnala Sasikala ◽  
Yelamanchili Sadhana ◽  
Ketavarapu Vijayasarathy ◽  
Anand Gupta ◽  
Sarala Kumari Daram ◽  
...  

Abstract Background A considerable amount of evidence demonstrates the potential of saliva in the diagnosis of COVID-19. Our aim was to determine the sensitivity of saliva versus swabs collected by healthcare workers (HCWs) and patients themselves to assess whether saliva detection can be offered as a cost-effective, risk-free method of SARS-CoV-2 detection. Methods This study was conducted in a hospital involving outpatients and hospitalized patients. A total of 3018 outpatients were tested. Of these, 200 qRT-PCR-confirmed SARS-CoV-2-positive patients were recruited for further study. In addition, 101 SARS-CoV-2-positive hospitalized patients with symptoms were also enrolled in the study. From outpatients, HCWs collected nasopharyngeal swabs (NPS), saliva were obtained. From inpatients, HCWs collected swabs, patient-collected swabs, and saliva were obtained. qRT-PCR was performed to detect SARS-CoV-2 by TAQPATH assay to determine the sensitivity of saliva detection. Sensitivity, specificity and positive/negative predictive values (PPV, NPV) of detecting SARS-CoV-2 were calculated using MedCalc. Results Of 3018 outpatients (asymptomatic: 2683, symptomatic: 335) tested by qRT-PCR, 200 were positive (males: 140, females: 60; aged 37.9 ± 12.8 years; (81 asymptomatic, 119 symptomatic). Of these, saliva was positive in 128 (64%); 39 of 81 asymptomatic (47%),89 of 119 symptomatic patients (74.8%). Sensitivity of detection was 60.9% (55.4–66.3%, CI 95%), with a negative predictive value of 36%(32.9–39.2%, CI 95%).Among 101 hospitalized patients (males:65, females: 36; aged 53.48 ± 15.6 years), with HCW collected NPS as comparator, sensitivity of saliva was 56.1% (47.5–64.5, CI 95%), specificity 63.5%(50.4–75.3, CI95%) with PPV of 77.2% and NPV of 39.6% and that of self-swab was 52.3%(44–60.5%, CI95%), specificity 56.6% (42.3–70.2%, CI95%) with PPV 77.2% and NPV29.7%. Comparison of positivity with the onset of symptoms revealed highest detection in saliva on day 3 after onset of symptoms. Additionally, only saliva was positive in 13 (12.8%) hospitalized patients. Conclusion Saliva which is easier to collect than nasopharyngeal swab is a viable alternate to detect SARS-COV-2 in symptomatic patients in the early stage of onset of symptoms. Although saliva is currently not recommended for screening asymptomatic patients, optimization of collection and uniform timing of sampling might improve the sensitivity enabling its use as a screening tool at community level.


2021 ◽  
Vol 6 (1) ◽  
pp. e000561
Author(s):  
Ving Fai Chan ◽  
Fatma Omar ◽  
Elodie Yard ◽  
Eden Mashayo ◽  
Damaris Mulewa ◽  
...  

ObjectiveTo review and compare the cost-effectiveness of the integrated model (IM) and vertical model (VM) of school eye health programme in Zanzibar.Methods and analysisThis 6-month implementation research was conducted in four districts in Zanzibar. Nine and ten schools were recruited into the IM and VM, respectively. In the VM, teachers conducted eye health screening and education only while these eye health components were added to the existing school feeding programme (IM). The number of children aged 6–13 years old screened and identified was collected monthly. A review of project account records was conducted with 19 key informants. The actual costs were calculated for each cost categories, and costs per child screened and cost per child identified were compared between the two models.ResultsScreening coverage was 96% and 90% in the IM and VM with 297 children (69.5%) from the IM and 130 children (30.5%) from VM failed eye health screening. The 6-month eye health screening cost for VM and IM was US$6 728 and US$7 355. The cost per child screened for IM and VM was US$1.23 and US$1.31, and the cost per child identified was US$24.76 and US$51.75, respectively.ConclusionBoth models achieved high coverage of eye health screening with the IM being a more cost-effective school eye health delivery screening compared with VM with great opportunities for cost savings.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2963
Author(s):  
Melinda Timea Fülöp ◽  
Miklós Gubán ◽  
György Kovács ◽  
Mihály Avornicului

Due to globalization and increased market competition, forwarding companies must focus on the optimization of their international transport activities and on cost reduction. The minimization of the amount and cost of fuel results in increased competition and profitability of the companies as well as the reduction of environmental damage. Nowadays, these aspects are particularly important. This research aims to develop a new optimization method for road freight transport costs in order to reduce the fuel costs and determine optimal fueling stations and to calculate the optimal quantity of fuel to refill. The mathematical method developed in this research has two phases. In the first phase the optimal, most cost-effective fuel station is determined based on the potential fuel stations. The specific fuel prices differ per fuel station, and the stations are located at different distances from the main transport way. The method developed in this study supports drivers’ decision-making regarding whether to refuel at a farther but cheaper fuel station or at a nearer but more expensive fuel station based on the more economical choice. Thereafter, it is necessary to determine the optimal fuel volume, i.e., the exact volume required including a safe amount to cover stochastic incidents (e.g., road closures). This aspect of the optimization method supports drivers’ optimal decision-making regarding optimal fuel stations and how much fuel to obtain in order to reduce the fuel cost. Therefore, the application of this new method instead of the recently applied ad-hoc individual decision-making of the drivers results in significant fuel cost savings. A case study confirmed the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document