Probabilistic Investigation of Foundation Design for Offshore Gravity Structures

1976 ◽  
Vol 16 (02) ◽  
pp. 97-109 ◽  
Author(s):  
L.M. Kraft ◽  
J.D. Murff

Abstract This paper lays the groundwork for establishing foundation safety criteria for offshore gravity structures. The concepts are explained in terms of first- and second-order uncertainty analyses. Various uncertainties associated with foundation analyses are identified and applications are illustrated with examples. Introduction Gravity structures play a prominent role today in North Sea oil development. These structures are not supported by piles, as are most ocean structures, but rather sit directly on the ocean bottom and depend on their foundation geometries and large weights m resist severe environmental loadings. A number of structural and foundation configurations have been proposed; however, attention is restricted here to a general configuration typical of the most prominent structures presently being constructed. prominent structures presently being constructed. An example of a gravity structure is illustrated in Fig. 1. The structure foundation consists of a large caisson placed directly on the unprepared sea-bed surface. The deck is supported by large columns extending from the caisson. Various combinations of steel and reinforced concrete have been proposed, but most structures are being constructed almost entirely of reinforced and prestressed concrete. prestressed concrete. One of the primary engineering concerns with these structures is foundation design. Because of the variability associated with the environmental forces, as well as the basic soil properties, this problem lends itself well to modem probabilistic problem lends itself well to modem probabilistic procedures. Such procedures provide a rational, procedures. Such procedures provide a rational, quantitative means for evaluating uncertainties affecting appropriate design, even though a degree of subjectivity will always remain in any such evaluation. The probabilistic method requires the engineer to formally and consistently recognize die variability of many of the important design parameters. The method gives management and parameters. The method gives management and others responsible for setting design criteria an opportunity to appraise cost/benefits of design levels required for given reliability levels. It also quantifies reliability to permit direct comparison with other options. This paper presents a method for analyzing the reliability of gravity-structure foundations in terms of simple loading and resistance models. The sources of variability in estimating resistance to loads are discussed, with particular emphasis on the nature of soil-property variability and uncertainty. These concepts are illustrated through an analysis of a typical gravity-structure foundation. SPEJ P. 97

Geophysics ◽  
2007 ◽  
Vol 72 (5) ◽  
pp. SM231-SM239 ◽  
Author(s):  
Carl J. Regone

Three-dimensional finite-difference modeling studies conducted over subsalt structures in the deepwater Gulf of Mexico confirm the deficiencies of narrow-azimuth towed-streamer surveys and predict significant improvement in image quality with wide-azimuth methods. Finite-difference modeling has provided important design parameters for two separate approaches for wide-azimuth surveys: ocean-bottom receivers distributed in a sparse grid on the ocean floor coupled with a dense grid of source points on the surface, and a wide-azimuth towed-streamer method using multiple seismic vessels in a novel configuration. These two methods complement each other. Ocean-bottom receivers may be used effectively where field development has resulted in many obstacles that might interfere with towed-streamer methods, where the required size of the 3D survey is not too extensive, or where very long offsets are required for all azimuths. Towed-streamer methods are more efficient for large surveys, and key parameters in the wide-azimuth towed-streamer method can be varied to provide a wide range of cost versus data-quality options to make the method suitable for application in scenarios ranging from exploration to field development.


2021 ◽  
Vol 9 (6) ◽  
pp. 589
Author(s):  
Subhamoy Bhattacharya ◽  
Domenico Lombardi ◽  
Sadra Amani ◽  
Muhammad Aleem ◽  
Ganga Prakhya ◽  
...  

Offshore wind turbines are a complex, dynamically sensitive structure due to their irregular mass and stiffness distribution, and complexity of the loading conditions they need to withstand. There are other challenges in particular locations such as typhoons, hurricanes, earthquakes, sea-bed currents, and tsunami. Because offshore wind turbines have stringent Serviceability Limit State (SLS) requirements and need to be installed in variable and often complex ground conditions, their foundation design is challenging. Foundation design must be robust due to the enormous cost of retrofitting in a challenging environment should any problem occur during the design lifetime. Traditionally, engineers use conventional types of foundation systems, such as shallow gravity-based foundations (GBF), suction caissons, or slender piles or monopiles, based on prior experience with designing such foundations for the oil and gas industry. For offshore wind turbines, however, new types of foundations are being considered for which neither prior experience nor guidelines exist. One of the major challenges is to develop a method to de-risk the life cycle of offshore wind turbines in diverse metocean and geological conditions. The paper, therefore, has the following aims: (a) provide an overview of the complexities and the common SLS performance requirements for offshore wind turbine; (b) discuss the use of physical modelling for verification and validation of innovative design concepts, taking into account all possible angles to de-risk the project; and (c) provide examples of applications in scaled model tests.


2018 ◽  
Vol 13 (3) ◽  
pp. 72-76
Author(s):  
Гумар Булгариев ◽  
Gumar Bulgariev ◽  
Геннадий Пикмуллин ◽  
Gennadiy Pikmullin ◽  
Ильгиз Галиев ◽  
...  

At the present stage of development of the country’s agro-industrial complex, the technological process of surface tillage by combined soil-cultivating machines, simultaneously combining a number of operations in one pass through the field, causes the presence in their designs of the necessary set of various promising working organs. In view of the foregoing, a rotary soil ripper with a spiral-plate working member equipped with radially directed teeth and connected by means of rods with end flanges has been developed. Also, the researched ripper has the limits of penetration of the working element in the form of flat discs equipped with flanges and the radial stop have the ability to rotate around their axes independently of the ripper shaft. An analytical study of the working units of this ripper was carried out from the point of view of the influence of their size and teeth on the process of interaction with the soil, on the basis of which some of their parameters were determined. In conclusion, it was concluded that the analytical equations obtained allow us to justify the choice of the most important design parameters of the proposed new design and design a toothed rotary working device that reduces to constructive implementation after calculating their basic dimensions.


2019 ◽  
Vol 14 (10) ◽  
pp. 87 ◽  
Author(s):  
Arshia Taimouri ◽  
Korosh Emamisaleh ◽  
Davoud Mohammadi

Following the rapid development of the Internet, e-commerce websites are widely used today for various goals. An essential point in the prosperity of these websites is their level of usability. Accordingly, measuring this usability is indispensable for these websites to check whether they are moving in the right path. Thus, in this article, the usability scores of five well-known online food-ordering websites in Iran have been evaluated using a novel fuzzy Kano method with respect to design parameters. In addition to assessing usability scores, the design parameters of these websites have been classified and reviewed in a detailed manner in order to determine the design priorities of these websites as one of the main results of this study. Data were gathered using a questionnaire with 190 respondents. Results demonstrated that Snappfood is the best online food-ordering website in Iran. In addition, sorting restaurants based on customer satisfaction score, using high-quality images of foods along with the image zooming feature, and the existence of complete information about foods and restaurants are the most effective and important design parameters of these types of websites according to the findings of this study.


2008 ◽  
Vol 24 (4) ◽  
pp. 347-355 ◽  
Author(s):  
H. W. Liao ◽  
H. Y. Huang

AbstractThe applications of skew plates in the construction of aerospace structures are well known. The critical buckling load and post-buckling strength are two important design parameters of skew composite laminates. In this study, the refined buckling and nonlinear postbuckling solutions of a homogenous isotropic skew plate based on polynomial expansions of various degrees have been examined. Numerical results based on high-order Rayleigh-Ritz solutions are presented for certain type of oblique plates.


2021 ◽  
Vol 111 (06) ◽  
pp. 458-463
Author(s):  
Yorck Hedicke-Claus ◽  
Christopher Roe ◽  
Mareile Kriwall ◽  
Malte Stonis

In diesem Beitrag wird eine Methode vorgestellt, die es ermöglicht die Komplexität eines Schmiedeteils automatisiert auf Basis der CAD-Datei des Schmiedeteils zu bestimmen. Eine automatisierte Bewertung der Schmiedeteilkomplexität ist für eine digitalisierte und automatisierte Auslegung von Stadienfolgen notwendig, um wichtige Auslegungsparameter wie den Gratanteil oder die Anzahl der Stadien festlegen zu können.   In this paper, a method is presented that enables the complexity of a forging to be determined automatically based on the CAD file of the forging. An automated evaluation of the forging complexity is necessary for a digitized and automated design of forging sequences to be able to determine important design parameters such as the flash ratio or the number of stages.


Volume 4 ◽  
2004 ◽  
Author(s):  
K.-J. Youn ◽  
B.-J. Ahn ◽  
Youn J. Kim

An agitator is generally used in the chemical and food industries, and water treatment plants. The water treatment processes are to be classified into rapid mixing, coagulation, precipitation, filtration and sterilization. Rapid mixing process is the smallest scale and its dispersion time is short. It is a very important process because it gives significant effects on the following processes. A quick injection agitator is used to mix water and many kinds of chemicals. A quick injection agitator has superior mixing characteristics that represent a major step forward in the water treatment. It consists of a motor driven open propeller, which creates a vacuum in the chamber directly above the propeller. This vacuum is transmitted to the chemical metering/control systems by a vacuum line similar to current remote injection systems. The most important design parameters are velocity gradient and dispersion time in a quick injection agitator. Velocity gradient is changed by the shape of the propeller and vacuum in a space between the propeller and the vacuum enhancer. In this study, numerical analyses are carried out to investigate the characteristic of flow in a quick injection agitator with various gaps between the propeller and the vacuum enhancer. A commercial CFD code is used to compute the 3-D viscous flow fields within the propeller of the agitator. Numerical results are graphically depicted with different velocity gradients. Special attention is paid to following topics: pressure distribution, velocity gradient, and void fraction.


Author(s):  
S. Neelamani ◽  
Bassam N. Shuhaibar ◽  
Khaled Al-Salem ◽  
Yousef Al-Osairi ◽  
Qusaie E. Karam ◽  
...  

Abstract Maintaining and retaining a quality sandy beach is a primary requirement for attracting people and tourists in any coastal country. Tourism Enterprises Company (TEC) in Kuwait owns 230 m long sandy beach in Ras Al-Ardh Sea Club, Salmiya, Kuwait. The beach has been eroding because of strong hydrodynamics forces from waves and currents. TEC wants to develop a stable sandy beach of 30 m wide. Kuwait Institute for Scientific Research (KISR), Kuwait is assigned to carry out the required scientific studies. In order to make sure a stable quality beach will exist, KISR has carried out the needed studies, which involves the field measurements such as bbathymetry survey, current and tidal variations, physical characteristics of beach soil, beach and sea bed profile, establishing the design parameters such as waves, currents, tide and wind. Hydrodynamic model study using DELFT3D model for the present and for the proposed extended groin conditions with beach nourishment were carried out. Also numerical modeling using GENESIS model to understand the future shore line changes due to the proposed development was carried out. Design of Groins to estimate the weight of armor units and weight of inner layers were carried out. The particle size and quantity of sand needed for reclamation of 30 m wide beach was estimated. Based on the study, it is recommended that the sandy soil to be used for 30 m wide beach nourishment should have D50 greater than 0.42 mm (say 0.5 mm) and D10 greater than 0.25 mm. The borrow pit much be selected by keeping this soil characters in mind. It is recommended to use a submerged offshore breakwater in order to retain the beach sand in place and for reducing the maintenance nourishment. Otherwise, large quantity of the capital nourished beach sand will escape into the deeper water due to strong current coupled with waves and steep seabed slopes. Environmental Impact Study was carried out as per Kuwait Environment Public Authority requirements to bring out the impacts due to beach filling and the construction submerged offshore barrier and extension of east groin for a distance of 30 m. TEC will implement the recommendations for developing the beach in Ras Al-Ardh sea club and will be useful to attract more people to use this beach.


Author(s):  
Matthew W. Frost ◽  
J. Paul Edwards ◽  
Paul R. Fleming ◽  
Stuart J. Arnold

With the increasing agenda for sustainability, the United Kingdom is attempting to move away from the empirical design of pavement foundations to develop a performance specification approach that facilitates analytical design. The measurement of the subgrade performance parameters of resilient modulus and resistance to permanent deformation is required for analytical design. These parameters ideally should be assessed concurrently under loading and environmental conditions similar to those the materials will experience in the field. To date, measurement of these parameters is largely confined to research laboratories using cyclic triaxial testing with advanced on-sample strain measurement. This apparatus is considered too complicated for routine commercial use; hence, the implementation of laboratory performance evaluation for routine pavement foundation design is potentially limited. A previous program of cyclic triaxial testing on clay subgrades indicated a series of useful correlations between strength and permanent deformation behavior (via a threshold stress) and material resilient modulus at this threshold. The previous work is reviewed; with these correlations, data from tests performed on three different clay materials to develop simplified equipment and procedures for the routine measurement of the required design parameters are presented. Simple pseudostatic tests can measure a subgrade modulus for a simplified performance-based design. The previous data (in the light of the recent work) were reevaluated to show a boundary correlation that may allow a shear strength–based parameter to control (in design) the onset of permanent deformation, and the ways long-term subgrade water content changes can be accommodated are detailed.


1983 ◽  
Vol 11 (1) ◽  
pp. 65-70
Author(s):  
H. R. Singh

Important design parameters for a two-port three-terminal band-pass filter configuration of the integrated thin-film exponential distributed parameter R–C–KR microstructure are presented. The circuit exhibits load independent characteristics. The changes in the value of design parameters under varying loading conditions are given. Various plots illustrating the inter-relationship of the different parameters with each other that can serve as guidelines for a system designer to obtain a pre-assigned pattern of the performance characteristics of the microstructure are included.


Sign in / Sign up

Export Citation Format

Share Document